If you think this project is helpful to you, you can give this project a star ⭐
The aim of this package is to build a unified toolbox in R for mcirobiome biomarker discovery by integrating various existing methods.
Many statistical methods have been proposed to discovery the microbiome biomaker by compare the taxon abundance between different classes. Some methods developed specifically for microbial community, such as linear discriminant analysis (LDA) effect size (LEfSe) (Segata et al. 2011), metagenomeSeq (Paulson et al. 2013); and some methods developed specifically for RNA-Seq data, such as DESeq2 (Love, Huber, and Anders 2014) and edgeR [@{Robinson_2009], have been proposed for microbiome biomarker discovery. We usually use several methods for microbiome biomarker discovery and compare the results, which requires multiple tools developed in different programming, even in different OS.
microbiomeMarker take the phyloseq-class
object in package
phyloseq as input, since
phyloseq is the most popular R package in microbiome analysis and
with phyloseq you can easily import taxon abundance and phylogenetic
tree of taxon output from common microbiome bioinformatics platforms,
such as DADA2 and
qiime2.
Kindly cite as follows: Yang Cao (2020). microbiomeMarker: microbiome biomarker analysis. R package version 0.0.1.9000. https://github.com/yiluheihei/microbiomeMarker. DOI: 10.5281/zenodo.3749415.
- Shanmugam, Gnanendra, Song Hee Lee, and Junhyun Jeon. “EzMAP: Easy Microbiome Analysis Platform.” BMC bioinformatics 22.1 (2021): 1-10.
- Altaib, Hend, et al. “Differences in the Concentration of the Fecal Neurotransmitters GABA and Glutamate Are Associated with Microbial Composition among Healthy Human Subjects.” Microorganisms 9.2 (2021): 378.
- Ingham, Anna Cäcilia, et al. “Microbiota long-term dynamics and prediction of acute graft-versus-host-disease in pediatric allogeneic stem cell transplantation.” medRxiv (2021).
You can install the package directly from github
if (!require(remotes)) install.packages("remotes")
remotes::install_github("yiluheihei/microbiomeMarker")
Since phyloseq objects are a
great data-standard for microbiome data in R, the core functions in
microbiomeMarker take phylosq
object as input. Conveniently,
microbiomeMarker provides features to import external data files
form two common tools of microbiome analysis,
qiime2 and
dada2.
The output of the dada2 pipeline is a feature table of amplicon sequence variants (an ASV table): A matrix with rows corresponding to samples and columns to ASVs, in which the value of each entry is the number of times that ASV was observed in that sample. This table is analogous to the traditional OTU table. Conveniently, taxa names are saved as
library(microbiomeMarker)
#> Registered S3 method overwritten by 'treeio':
#> method from
#> root.phylo ape
seq_tab <- readRDS(system.file("extdata", "dada2_seqtab.rds",
package= "microbiomeMarker"))
tax_tab <- readRDS(system.file("extdata", "dada2_taxtab.rds",
package= "microbiomeMarker"))
sam_tab <- read.table(system.file("extdata", "dada2_samdata.txt",
package= "microbiomeMarker"), sep = "\t", header = TRUE, row.names = 1)
ps <- import_dada2(seq_tab = seq_tab, tax_tab = tax_tab, sam_tab = sam_tab)
ps
#> phyloseq-class experiment-level object
#> otu_table() OTU Table: [ 232 taxa and 20 samples ]
#> sample_data() Sample Data: [ 20 samples by 4 sample variables ]
#> tax_table() Taxonomy Table: [ 232 taxa by 6 taxonomic ranks ]
#> refseq() DNAStringSet: [ 232 reference sequences ]
qiime2 is the most widely used software for
metagenomic analysis. User can import the feature table, taxonomic
table, phylogenetic tree, representative sequence and sample metadata
from qiime2 using import_qiime2()
.
otuqza_file <- system.file("extdata", "table.qza",package = "microbiomeMarker")
taxaqza_file <- system.file("extdata", "taxonomy.qza",package = "microbiomeMarker")
sample_file <- system.file(
"extdata", "sample-metadata.tsv",
package = "microbiomeMarker"
)
treeqza_file <- system.file("extdata", "tree.qza",package = "microbiomeMarker")
ps <- import_qiime2(
otu_qza = otuqza_file, taxa_qza = taxaqza_file,
sam_tab = sample_file, tree_qza = treeqza_file
)
#> Found more than one class "phylo" in cache; using the first, from namespace 'phyloseq'
#> Also defined by 'tidytree'
#> Found more than one class "phylo" in cache; using the first, from namespace 'phyloseq'
#> Also defined by 'tidytree'
#> Found more than one class "phylo" in cache; using the first, from namespace 'phyloseq'
#> Also defined by 'tidytree'
#> Found more than one class "phylo" in cache; using the first, from namespace 'phyloseq'
#> Also defined by 'tidytree'
#> Found more than one class "phylo" in cache; using the first, from namespace 'phyloseq'
#> Also defined by 'tidytree'
#> Found more than one class "phylo" in cache; using the first, from namespace 'phyloseq'
#> Also defined by 'tidytree'
#> Found more than one class "phylo" in cache; using the first, from namespace 'phyloseq'
#> Also defined by 'tidytree'
ps
#> phyloseq-class experiment-level object
#> otu_table() OTU Table: [ 770 taxa and 34 samples ]
#> sample_data() Sample Data: [ 34 samples by 9 sample variables ]
#> tax_table() Taxonomy Table: [ 770 taxa by 7 taxonomic ranks ]
#> phy_tree() Phylogenetic Tree: [ 770 tips and 768 internal nodes ]
For biobakey lefse (a
Galaxy module, a Conda
formula, a Docker image, and included in bioBakery (VM and cloud).), the
input file must be a tab-delimited text, consists of a list of numerical
features, the class vector and optionally the subclass and subject
vectors. The features can be read counts directly or abundance
floating-point values more generally, and the first field is the name of
the feature. Class, subclass and subject vectors have a name (the first
field) and a list of non-numerical strings. biobakery
lefse. User can import the
input file suitable for biobakery
lefse to phyloseq
object
using import_biobakery_lefse_in()
file <- system.file(
"extdata",
"hmp_small_aerobiosis.txt",
package = "microbiomeMarker"
)
# six level of taxonomic ranks,
# meta data: row 1 represents class (oxygen_availability),
# row 2 represents subclass (body_site), row 3 represents subject (subject_id)
hmp_oxygen <- import_biobakery_lefse_in(
file,
ranks_prefix = c("k", "p", "c", "o", "f", "g"),
meta_rows = 1:3,
)
hmp_oxygen
#> phyloseq-class experiment-level object
#> otu_table() OTU Table: [ 928 taxa and 55 samples ]
#> sample_data() Sample Data: [ 55 samples by 3 sample variables ]
#> tax_table() Taxonomy Table: [ 928 taxa by 1 taxonomic ranks ]
microbiomeMarker reexports three import functions from phyloseq,
including import_biom()
, import_qiime()
and import_mothur()
, to
help users to import data from biom file, and
output from qiime and
mothur. More details on these three import
functions can be see from
here.
Users can also import the external files into phyloseq
object
manually. For more details on how to create phyloseq
object from
manually imported data, please see this
tutorial.
Curently, LEfSe is the most used tool for microbiome biomarker discovery, and the first method to integrate to microbiomeMarker is LEfSe.
library(ggplot2)
# sample data from lefse python script. The dataset contains 30 abundance
# profiles (obtained processing the 16S reads with RDP) belonging to 10 rag2
# (control) and 20 truc (case) mice
data("spontaneous_colitis")
# add prefix of ranks
mm <- lefse(
spontaneous_colitis,
norm = "CPM",
class = "class",
multicls_strat = TRUE
)
# lefse return a microbioMarker class inherits from phyloseq
mm
#> microbiomeMarker-class inherited from phyloseq-class
#> normalization method: [ CPM ]
#> microbiome marker identity method: [ lefse ]
#> marker_table() Marker Table: [ 29 microbiome markers with 5 variables ]
#> otu_table() OTU Table: [ 132 taxa and 30 samples ]
#> sample_data() Sample Data: [ 30 samples by 1 sample variables ]
#> tax_table() Taxonomy Table: [ 132 taxa by 1 taxonomic ranks ]
The microbiome biomarker information was stored in a new data structure
marker_table-class
inherited from data.frame
, and you can access it
by using marker_table()
.
head(marker_table(mm))
#> feature
#> marker1 k__Bacteria|p__Bacteroidetes
#> marker2 k__Bacteria|p__Bacteroidetes|c__Bacteroidia
#> marker3 k__Bacteria|p__Bacteroidetes|c__Bacteroidia|o__Bacteroidales
#> marker4 k__Bacteria|p__Actinobacteria|c__Actinobacteria|o__Bifidobacteriales|f__Bifidobacteriaceae|g__Bifidobacterium
#> marker5 k__Bacteria|p__Bacteroidetes|c__Bacteroidia|o__Bacteroidales|f__Porphyromonadaceae
#> marker6 k__Bacteria|p__Actinobacteria|c__Actinobacteria|o__Bifidobacteriales|f__Bifidobacteriaceae
#> enrich_group lda pvalue padj
#> marker1 rag2 5.178600 0.0155342816 0.0155342816
#> marker2 rag2 5.178501 0.0137522075 0.0137522075
#> marker3 rag2 5.178501 0.0137522075 0.0137522075
#> marker4 rag2 5.044767 0.0001217981 0.0001217981
#> marker5 rag2 4.886991 0.0013201097 0.0013201097
#> marker6 rag2 4.750839 0.0001217981 0.0001217981
Bar plot for output of lefse:
plot_ef_bar(mm, label_level = 1) +
scale_fill_manual(values = c("rag2" = "blue", "truc" = "red"))
STAMP (Parks et al. 2014) is a widely-used graphical software package that provides “best pratices” in choose appropriate statisticalmethods for microbial taxonomic and functional analysis. Users can tests for both two groups or multiple groups, and effect sizes and confidence intervals are supported that allows critical assessment of the biological relevancy of test results. Here, microbiomeMarker also integrates the statistical methods used in STAMP for microbial comparison analysis between two-groups and multiple-groups.
Function test_two_groups()
is developed for statistical test between
two groups, and three test methods are provided: welch test, t test and
white test.
data("enterotypes_arumugam")
# take welch test for example
two_group_welch <- test_two_groups(
enterotypes_arumugam,
group = "Gender",
method = "welch.test"
)
# three significantly differential genera (marker)
two_group_welch
#> microbiomeMarker-class inherited from phyloseq-class
#> normalization method: [ TSS ]
#> microbiome marker identity method: [ welch.test ]
#> marker_table() Marker Table: [ 3 microbiome markers with 5 variables ]
#> otu_table() OTU Table: [ 244 taxa and 39 samples ]
#> sample_data() Sample Data: [ 39 samples by 9 sample variables ]
#> tax_table() Taxonomy Table: [ 244 taxa by 1 taxonomic ranks ]
# details of result of the three markers
head(marker_table(two_group_welch))
#> feature enrich_group diff_mean
#> marker1 p__Firmicutes|g__Heliobacterium M -4.271086e-06
#> marker2 p__Firmicutes|g__Parvimonas M -6.699283e-06
#> marker3 p__Firmicutes|g__Peptostreptococcus M -3.347523e-05
#> pvalue padj
#> marker1 0.02940341 0.02940341
#> marker2 0.03281399 0.03281399
#> marker3 0.01714937 0.01714937
Function test_multiple_groups()
is constructed for statistical test
for multiple groups, two test method are provided: anova and kruskal
test.
# three groups
ps <- phyloseq::subset_samples(
enterotypes_arumugam,
Enterotype %in% c("Enterotype 3", "Enterotype 2", "Enterotype 1")
)
multiple_group_anova <- test_multiple_groups(
ps,
group = "Enterotype",
method = "anova"
)
# 24 markers
multiple_group_anova
#> microbiomeMarker-class inherited from phyloseq-class
#> normalization method: [ TSS ]
#> microbiome marker identity method: [ anova ]
#> marker_table() Marker Table: [ 24 microbiome markers with 5 variables ]
#> otu_table() OTU Table: [ 238 taxa and 32 samples ]
#> sample_data() Sample Data: [ 32 samples by 9 sample variables ]
#> tax_table() Taxonomy Table: [ 238 taxa by 1 taxonomic ranks ]
head(marker_table(multiple_group_anova))
#> feature enrich_group eta_squared
#> marker1 p__Bacteroidetes Enterotype 1 0.5821619
#> marker2 p__Unclassified Enterotype 3 0.4497271
#> marker3 p__Actinobacteria|g__Scardovia Enterotype 2 0.2196652
#> marker4 p__Bacteroidetes|g__Alistipes Enterotype 3 0.2001541
#> marker5 p__Bacteroidetes|g__Bacteroides Enterotype 1 0.7633661
#> marker6 p__Bacteroidetes|g__Parabacteroides Enterotype 1 0.2582573
#> pvalue padj
#> marker1 3.196070e-06 3.196070e-06
#> marker2 1.731342e-04 1.731342e-04
#> marker3 2.742042e-02 2.742042e-02
#> marker4 3.922758e-02 3.922758e-02
#> marker5 8.396825e-10 8.396825e-10
#> marker6 1.314233e-02 1.314233e-02
The result of multiple group statistic specified whether the means of all groups is equal or not. To identify which pairs of groups may differ from each other, post-hoc test must be performed.
pht <- posthoc_test(ps, group = "Enterotype")
pht
#> postHocTest-class object
#> Pairwise test result of 238 features, DataFrameList object, each DataFrame has five variables:
#> comparions : pair groups to test which separated by '-'
#> diff_mean: difference in mean proportions
#> pvalue : post hoc test p values
#> ci_lower : lower confidence interval
#> ci_upper : upper confidence interval
#> Posthoc multiple comparisons of means using tukey method
# 24 significantly differential genera
markers <- marker_table(multiple_group_anova)$feature
markers
#> p__Bacteroidetes p__Unclassified
#> "p__Bacteroidetes" "p__Unclassified"
#> p__Actinobacteria|g__Scardovia p__Bacteroidetes|g__Alistipes
#> "p__Actinobacteria|g__Scardovia" "p__Bacteroidetes|g__Alistipes"
#> p__Bacteroidetes|g__Bacteroides p__Bacteroidetes|g__Parabacteroides
#> "p__Bacteroidetes|g__Bacteroides" "p__Bacteroidetes|g__Parabacteroides"
#> p__Bacteroidetes|g__Prevotella p__Firmicutes|g__Bulleidia
#> "p__Bacteroidetes|g__Prevotella" "p__Firmicutes|g__Bulleidia"
#> p__Firmicutes|g__Catenibacterium p__Firmicutes|g__Catonella
#> "p__Firmicutes|g__Catenibacterium" "p__Firmicutes|g__Catonella"
#> p__Firmicutes|g__Holdemania p__Firmicutes|g__Lactobacillus
#> "p__Firmicutes|g__Holdemania" "p__Firmicutes|g__Lactobacillus"
#> p__Firmicutes|g__Macrococcus p__Firmicutes|g__Peptostreptococcus
#> "p__Firmicutes|g__Macrococcus" "p__Firmicutes|g__Peptostreptococcus"
#> p__Firmicutes|g__Ruminococcus p__Firmicutes|g__Selenomonas
#> "p__Firmicutes|g__Ruminococcus" "p__Firmicutes|g__Selenomonas"
#> p__Firmicutes|g__Streptococcus p__Firmicutes|g__Subdoligranulum
#> "p__Firmicutes|g__Streptococcus" "p__Firmicutes|g__Subdoligranulum"
#> p__Proteobacteria|g__Bartonella p__Proteobacteria|g__Brucella
#> "p__Proteobacteria|g__Bartonella" "p__Proteobacteria|g__Brucella"
#> p__Proteobacteria|g__Granulibacter p__Proteobacteria|g__Rhodospirillum
#> "p__Proteobacteria|g__Granulibacter" "p__Proteobacteria|g__Rhodospirillum"
#> p__Proteobacteria|g__Stenotrophomonas p__Unclassified|g__Unclassified
#> "p__Proteobacteria|g__Stenotrophomonas" "p__Unclassified|g__Unclassified"
# take a marker "p__Bacteroidetes|g__Bacteroides"
# for example, we will show "p__Bacteroidetes|g__Bacteroides" differ from
# between Enterotype 2-Enterotype 1 and Enterotype 3-Enterotype 2.
pht@result$"p__Bacteroidetes|g__Bacteroides"
#> DataFrame with 3 rows and 5 columns
#> comparions diff_mean pvalue
#> <character> <numeric> <numeric>
#> Enterotype 2-Enterotype 1 Enterotype 2-Enterot.. -0.2813948 4.77015e-08
#> Enterotype 3-Enterotype 1 Enterotype 3-Enterot.. -0.2604547 1.63635e-09
#> Enterotype 3-Enterotype 2 Enterotype 3-Enterot.. 0.0209401 7.88993e-01
#> ci_lower ci_upper
#> <numeric> <numeric>
#> Enterotype 2-Enterotype 1 -0.3713469 -0.1914428
#> Enterotype 3-Enterotype 1 -0.3312286 -0.1896808
#> Enterotype 3-Enterotype 2 -0.0575765 0.0994567
Visualization of post test result of a given feature.
# visualize the post hoc test result of Bacteroides
plot_postHocTest(pht, feature = "p__Bacteroidetes|g__Bacteroides")
mm_mgs <- run_metagenomeseq(
pediatric_ibd,
"Class",
contrast = c("CD","Control"),
pvalue_cutoff = 0.1,
p_adjust = "fdr"
)
mm_mgs
#> microbiomeMarker-class inherited from phyloseq-class
#> normalization method: [ CSS ]
#> microbiome marker identity method: [ metagenomeSeq: ZILN ]
#> marker_table() Marker Table: [ 11 microbiome markers with 5 variables ]
#> otu_table() OTU Table: [ 786 taxa and 43 samples ]
#> sample_data() Sample Data: [ 43 samples by 2 sample variables ]
#> tax_table() Taxonomy Table: [ 786 taxa by 1 taxonomic ranks ]
# multiple groups comparison
ps <- phyloseq::subset_samples(
cid_ying,
Consistency %in% c("formed stool", "liquid", "semi-formed")
)
mm_mgs_multiple <- run_metagenomeseq(ps, "Consistency", method = "ZIG")
#> it= 0, nll=608.38, log10(eps+1)=Inf, stillActive=669
#> it= 1, nll=621.65, log10(eps+1)=0.02, stillActive=137
#> it= 2, nll=617.53, log10(eps+1)=0.04, stillActive=132
#> it= 3, nll=613.29, log10(eps+1)=0.04, stillActive=124
#> it= 4, nll=608.76, log10(eps+1)=0.07, stillActive=95
#> it= 5, nll=605.16, log10(eps+1)=0.07, stillActive=60
#> it= 6, nll=603.49, log10(eps+1)=0.07, stillActive=35
#> it= 7, nll=604.06, log10(eps+1)=0.05, stillActive=23
#> it= 8, nll=607.70, log10(eps+1)=0.00, stillActive=0
mm_mgs_multiple
#> microbiomeMarker-class inherited from phyloseq-class
#> normalization method: [ CSS ]
#> microbiome marker identity method: [ metagenomeSeq: ZIG ]
#> marker_table() Marker Table: [ 486 microbiome markers with 5 variables ]
#> otu_table() OTU Table: [ 669 taxa and 413 samples ]
#> sample_data() Sample Data: [ 413 samples by 6 sample variables ]
#> tax_table() Taxonomy Table: [ 669 taxa by 1 taxonomic ranks ]
# two groups comparison
mm_des <- run_deseq2(
pediatric_ibd,
"Class",
contrast = c("Control", "CD"),
pvalue_cutoff = 0.05,
p_adjust = "fdr"
)
mm_des
#> microbiomeMarker-class inherited from phyloseq-class
#> normalization method: [ RLE ]
#> microbiome marker identity method: [ DESeq2: Wald ]
#> marker_table() Marker Table: [ 47 microbiome markers with 5 variables ]
#> otu_table() OTU Table: [ 786 taxa and 43 samples ]
#> sample_data() Sample Data: [ 43 samples by 2 sample variables ]
#> tax_table() Taxonomy Table: [ 786 taxa by 1 taxonomic ranks ]
# multiple groups
mm_des_multiple <- run_deseq2(
ps,
"Consistency",
pvalue_cutoff = 0.05,
p_adjust = "fdr"
)
mm_des_multiple
#> microbiomeMarker-class inherited from phyloseq-class
#> normalization method: [ RLE ]
#> microbiome marker identity method: [ DESeq2: LRT ]
#> marker_table() Marker Table: [ 90 microbiome markers with 5 variables ]
#> otu_table() OTU Table: [ 669 taxa and 413 samples ]
#> sample_data() Sample Data: [ 413 samples by 6 sample variables ]
#> tax_table() Taxonomy Table: [ 669 taxa by 1 taxonomic ranks ]
mm_edger <- run_edger(
pediatric_ibd,
"Class",
c("CD", "Control"),
pvalue_cutoff = 0.1,
p_adjust = "fdr"
)
mm_edger
#> microbiomeMarker-class inherited from phyloseq-class
#> normalization method: [ TMM ]
#> microbiome marker identity method: [ edgeR: LRT ]
#> marker_table() Marker Table: [ 34 microbiome markers with 5 variables ]
#> otu_table() OTU Table: [ 786 taxa and 43 samples ]
#> sample_data() Sample Data: [ 43 samples by 2 sample variables ]
#> tax_table() Taxonomy Table: [ 786 taxa by 1 taxonomic ranks ]
# multiple groups
mm_edger_multiple <- run_edger(
ps,
"Consistency",
method = "QLFT",
pvalue_cutoff = 0.05,
p_adjust = "fdr"
)
mm_edger_multiple
#> microbiomeMarker-class inherited from phyloseq-class
#> normalization method: [ TMM ]
#> microbiome marker identity method: [ edgeR: QLFT ]
#> marker_table() Marker Table: [ 325 microbiome markers with 5 variables ]
#> otu_table() OTU Table: [ 669 taxa and 413 samples ]
#> sample_data() Sample Data: [ 413 samples by 6 sample variables ]
#> tax_table() Taxonomy Table: [ 669 taxa by 1 taxonomic ranks ]
mm_ancom <- run_ancom(ecam, "delivery", p_adjust = "none", theta = 0.6)
marker_table(mm_ancom)
#> feature
#> marker1 k__Bacteria|p__Actinobacteria
#> marker2 k__Bacteria|p__Actinobacteria|c__Actinobacteria
#> marker3 k__Bacteria|p__Actinobacteria|c__Actinobacteria|o__Bifidobacteriales
#> marker4 k__Bacteria|p__Proteobacteria|c__Gammaproteobacteria|o__Pseudomonadales
#> marker5 k__Bacteria|p__Actinobacteria|c__Actinobacteria|o__Bifidobacteriales|f__Bifidobacteriaceae
#> marker6 k__Bacteria|p__Bacteroidetes|c__Bacteroidia|o__Bacteroidales|f__Prevotellaceae
#> marker7 k__Bacteria|p__Proteobacteria|c__Gammaproteobacteria|o__Pseudomonadales|f__Pseudomonadaceae
#> marker8 k__Bacteria|p__Actinobacteria|c__Actinobacteria|o__Bifidobacteriales|f__Bifidobacteriaceae|g__Bifidobacterium
#> marker9 k__Bacteria|p__Bacteroidetes|c__Bacteroidia|o__Bacteroidales|f__Prevotellaceae|g__Prevotella
#> marker10 k__Bacteria|p__Proteobacteria|c__Gammaproteobacteria|o__Pseudomonadales|f__Pseudomonadaceae|g__Pseudomonas
#> enrich_group CLR_diff_mean W
#> marker1 Cesarean 0.29031730 105
#> marker2 Cesarean 0.30478464 105
#> marker3 Cesarean 0.37595028 106
#> marker4 Cesarean 0.08923968 73
#> marker5 Cesarean 0.37595028 106
#> marker6 Cesarean 0.20208170 83
#> marker7 Vaginal 0.03589234 70
#> marker8 Cesarean 0.37595028 106
#> marker9 Cesarean 0.20208170 83
#> marker10 Vaginal 0.03589234 70
mm_ancombc <- run_ancombc(ecam, "delivery", group_var = "delivery")
marker_table(mm_ancombc)
#> feature
#> marker1 k__Bacteria|p__Actinobacteria|c__Actinobacteria|o__Bifidobacteriales
#> marker2 k__Bacteria|p__Actinobacteria|c__Actinobacteria|o__Bifidobacteriales|f__Bifidobacteriaceae
#> marker3 k__Bacteria|p__Bacteroidetes|c__Bacteroidia|o__Bacteroidales|f__Prevotellaceae
#> marker4 k__Bacteria|p__Actinobacteria|c__Actinobacteria|o__Bifidobacteriales|f__Bifidobacteriaceae|g__Bifidobacterium
#> marker5 k__Bacteria|p__Bacteroidetes|c__Bacteroidia|o__Bacteroidales|f__Prevotellaceae|g__Prevotella
#> enrich_group effect_size pvalue padj
#> marker1 Cesarean -3.518274 0.0004343629 0.04908301
#> marker2 Cesarean -3.518274 0.0004343629 0.04908301
#> marker3 Vaginal 3.674617 0.0002382063 0.02739372
#> marker4 Cesarean -3.518274 0.0004343629 0.04908301
#> marker5 Vaginal 3.674617 0.0002382063 0.02739372
mm_lr <- run_sl(enterotypes_arumugam, "Gender", method = "LR")
#> Loading required package: lattice
marker_table(mm_lr)
#> feature enrich_group imp
#> marker1 p__Bacteroidetes|g__Zunongwangia F 100.00000
#> marker2 p__Proteobacteria|g__Aliivibrio M 61.82504
#> marker3 p__Proteobacteria|g__Bradyrhizobium M 48.58126
#> marker4 p__Proteobacteria|g__Aeromonas F 43.03515
#> marker5 p__Cyanobacteria M 24.08290
#> marker6 p__Firmicutes|g__Listeria M 20.94169
#> marker7 p__Proteobacteria|g__Magnetospirillum M 14.41667
#> marker8 p__Firmicutes|g__Thermoanaerobacter F 13.55835
#> marker9 p__Proteobacteria|g__Proteus M 12.46479
#> marker10 p__Firmicutes|g__Heliobacterium M 12.34414
# must specify the importance
mm_rf <- run_sl(
enterotypes_arumugam,
"Gender",
method = "RF",
importance = "impurity"
)
marker_table(mm_rf)
#> feature enrich_group imp
#> marker1 p__Firmicutes|g__Ruminococcaceae F 100.00000
#> marker2 p__Firmicutes|g__Subdoligranulum F 78.62319
#> marker3 p__Firmicutes|g__Acidaminococcus F 76.00265
#> marker4 p__Firmicutes|g__Megasphaera F 75.94370
#> marker5 p__Firmicutes|g__Faecalibacterium F 71.57685
#> marker6 p__Firmicutes|g__Heliobacterium M 71.42977
#> marker7 p__Firmicutes|g__Anaerotruncus F 68.36368
#> marker8 p__Firmicutes|g__Coprobacillus F 66.67126
#> marker9 p__Bacteroidetes|g__Porphyromonas F 66.50552
#> marker10 p__Actinobacteria|g__Bifidobacterium F 65.86837
mm_svm <- run_sl(enterotypes_arumugam, "Gender", method = "SVM")
marker_table(mm_svm)
#> feature enrich_group imp
#> marker1 p__Firmicutes|g__Peptostreptococcus M 100.00000
#> marker2 p__Proteobacteria|g__Escherichia/Shigella F 97.81022
#> marker3 p__Firmicutes|g__Faecalibacterium F 96.35036
#> marker4 p__Firmicutes|g__Clostridiales F 93.43066
#> marker5 p__Firmicutes|g__Anaerotruncus F 91.24088
#> marker6 p__Firmicutes|g__Mitsuokella M 86.86131
#> marker7 p__Proteobacteria|g__Enterobacteriaceae F 82.48175
#> marker8 p__Firmicutes|g__Acidaminococcus F 78.83212
#> marker9 p__Proteobacteria|g__Citrobacter F 78.10219
#> marker10 p__Proteobacteria|g__Haemophilus M 74.45255
plot_cladogram(mm, color = c("blue", "red"))
It’s recommended to use a named vector to set the colors of enriched group:
plot_cladogram(mm, color = c(truc = "blue", rag2 = "red"))
microbiomeMarker is still a newborn, and only contains lefse methods right now. Your suggestion and contribution will be highly appreciated.
- lefse python script, The main lefse code are translated from lefse python script,
- microbiomeViz, cladogram visualization of lefse is modified from microbiomeViz.
- phyloseq, the main data
structures used in microbiomeMarker are from or inherit from
phyloseq-class
in package phyloseq. - MicrobiotaProcess,
function
import_dada2()
andimport_qiime2()
are modified from theMicrobiotaProcess::import_dada2()
. - qiime2R,
import_qiime2()
are refer to the functions in qiime2R.
If you have any question, please file an issue on the issue tracker following the instructions in the issue template:
Please briefly describe your problem, what output actually happened, and what output you expect.
Please provide a minimal reproducible example. For more details on how to make a great minimal reproducible example, see https://stackoverflow.com/questions/5963269/how-to-make-a-great-r-reproducible-example and https://www.tidyverse.org/help/#reprex.
Brief description of the problem
# insert minimal reprducible example here
Love, Michael I, Wolfgang Huber, and Simon Anders. 2014. “Moderated Estimation of Fold Change and Dispersion for RNA-Seq Data with DESeq2.” Genome Biology 15 (12). https://doi.org/10.1186/s13059-014-0550-8.
Parks, Donovan H., Gene W. Tyson, Philip Hugenholtz, and Robert G. Beiko. 2014. “STAMP: Statistical Analysis of Taxonomic and Functional Profiles.” Bioinformatics 30 (21): 3123–24. https://doi.org/10.1093/bioinformatics/btu494.
Paulson, Joseph N, O Colin Stine, H’ector Corrada Bravo, and Mihai Pop. 2013. “Differential Abundance Analysis for Microbial Marker-Gene Surveys.” Nature Methods 10 (12): 1200–1202. https://doi.org/10.1038/nmeth.2658.
Segata, Nicola, Jacques Izard, Levi Waldron, Dirk Gevers, Larisa Miropolsky, Wendy S Garrett, and Curtis Huttenhower. 2011. “Metagenomic Biomarker Discovery and Explanation.” Genome Biology 12 (6): R60. https://doi.org/10.1186/gb-2011-12-6-r60.