-
Notifications
You must be signed in to change notification settings - Fork 110
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Add streaming ConvEmformer model (#49)
* init bin/conv_emformer_transducer_stateless * copy from csr/rnnt_emformer_model.* * modify bin/conv_emformer_transducer_stateless/decode.py * modify csrc/rnnt_conv_emformer_model.* * copy from python/csrc/rnnt_emformer_model.* * modify python/csrc/rnnt_conv_emformer_model.* * fix bugs, pass server test * fix style * fix style * fix style * minor fix * add run-streaming-conv-emformer-test.yaml * minor fix
- Loading branch information
1 parent
806fc50
commit 43f84f3
Showing
12 changed files
with
1,285 additions
and
0 deletions.
There are no files selected for viewing
137 changes: 137 additions & 0 deletions
137
.github/workflows/run-streaming-conv-emformer-test.yaml
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,137 @@ | ||
# Copyright 2022 Xiaomi Corp. (author: Fangjun Kuang, | ||
# Zengwei Yao) | ||
# See ../../LICENSE for clarification regarding multiple authors | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
# | ||
name: Run streaming ConvEmformer ASR tests | ||
|
||
on: | ||
push: | ||
branches: | ||
- master | ||
pull_request: | ||
types: [labeled] | ||
|
||
jobs: | ||
run_streaming_conv_emformer_asr_tests: | ||
if: github.event.label.name == 'ready' || github.event_name == 'push' | ||
runs-on: ${{ matrix.os }} | ||
strategy: | ||
fail-fast: false | ||
matrix: | ||
os: [ubuntu-18.04, macos-10.15] | ||
torch: ["1.10.0", "1.6.0"] | ||
torchaudio: ["0.10.0", "0.6.0"] | ||
python-version: [3.7, 3.8] | ||
exclude: | ||
- torch: "1.10.0" | ||
torchaudio: "0.6.0" | ||
- torch: "1.6.0" | ||
torchaudio: "0.10.0" | ||
|
||
steps: | ||
- uses: actions/checkout@v2 | ||
with: | ||
fetch-depth: 0 | ||
|
||
- name: Setup Python | ||
uses: actions/setup-python@v2 | ||
with: | ||
python-version: ${{ matrix.python-version }} | ||
|
||
- name: Install GCC 7 | ||
if: startsWith(matrix.os, 'ubuntu') | ||
run: | | ||
sudo apt-get install -y gcc-7 g++-7 | ||
echo "CC=/usr/bin/gcc-7" >> $GITHUB_ENV | ||
echo "CXX=/usr/bin/g++-7" >> $GITHUB_ENV | ||
- name: Install PyTorch ${{ matrix.torch }} | ||
shell: bash | ||
if: startsWith(matrix.os, 'ubuntu') | ||
run: | | ||
python3 -m pip install --upgrade pip | ||
python3 -m pip install wheel twine typing_extensions websockets sentencepiece>=0.1.96 | ||
python3 -m pip install torch==${{ matrix.torch }}+cpu numpy -f https://download.pytorch.org/whl/cpu/torch_stable.html | ||
pip install k2==1.16.dev20220621+cpu.torch${{ matrix.torch }} -f https://k2-fsa.org/nightly/index.html | ||
if [[ ${{ matrix.torchaudio }} == "0.10.0" ]]; then | ||
pip install torchaudio==${{ matrix.torchaudio }}+cpu -f https://download.pytorch.org/whl/cpu/torch_stable.html | ||
else | ||
pip install torchaudio==${{ matrix.torchaudio }} | ||
fi | ||
python3 -m torch.utils.collect_env | ||
- name: Install PyTorch ${{ matrix.torch }} | ||
shell: bash | ||
if: startsWith(matrix.os, 'macos') | ||
run: | | ||
python3 -m pip install --upgrade pip | ||
python3 -m pip install wheel twine typing_extensions websockets sentencepiece>=0.1.96 | ||
python3 -m pip install torch==${{ matrix.torch }} torchaudio==${{ matrix.torchaudio }} numpy -f https://download.pytorch.org/whl/cpu/torch_stable.html | ||
pip install k2==1.16.dev20220621+cpu.torch${{ matrix.torch }} -f https://k2-fsa.org/nightly/index.html | ||
python3 -m torch.utils.collect_env | ||
- name: Cache kaldifeat | ||
id: my-cache | ||
uses: actions/cache@v2 | ||
with: | ||
path: | | ||
~/tmp/kaldifeat | ||
key: cache-tmp-${{ matrix.python-version }}-${{ matrix.os }}-${{ matrix.torch }} | ||
|
||
- name: Install kaldifeat | ||
if: steps.my-cache.outputs.cache-hit != 'true' | ||
shell: bash | ||
run: | | ||
.github/scripts/install-kaldifeat.sh | ||
- name: Install sherpa | ||
shell: bash | ||
run: | | ||
python3 setup.py install | ||
- name: Download pretrained model and test-data | ||
shell: bash | ||
run: | | ||
git lfs install | ||
git clone https://huggingface.co/Zengwei/icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05 | ||
- name: Start server | ||
shell: bash | ||
run: | | ||
export PYTHONPATH=~/tmp/kaldifeat/kaldifeat/python:$PYTHONPATH | ||
export PYTHONPATH=~/tmp/kaldifeat/build/lib:$PYTHONPATH | ||
./sherpa/bin/conv_emformer_transducer_stateless/streaming_server.py \ | ||
--port 6006 \ | ||
--max-batch-size 50 \ | ||
--max-wait-ms 5 \ | ||
--nn-pool-size 1 \ | ||
--nn-model-filename ./icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05/exp/cpu-jit-epoch-30-avg-10-torch-${{ matrix.torch }}.pt \ | ||
--bpe-model-filename ./icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05/data/lang_bpe_500/bpe.model & | ||
echo "Sleep 10 seconds to wait for the server startup" | ||
sleep 10 | ||
- name: Start client | ||
shell: bash | ||
run: | | ||
./sherpa/bin/conv_emformer_transducer_stateless/streaming_client.py \ | ||
--server-addr localhost \ | ||
--server-port 6006 \ | ||
./icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05/test_wavs/1221-135766-0002.wav |
247 changes: 247 additions & 0 deletions
247
sherpa/bin/conv_emformer_transducer_stateless/decode.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,247 @@ | ||
# Copyright 2022 Xiaomi Corp. (authors: Fangjun Kuang | ||
# Zengwei Yao) | ||
# | ||
# See LICENSE for clarification regarding multiple authors | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
import math | ||
from typing import List, Tuple | ||
|
||
import torch | ||
from kaldifeat import FbankOptions, OnlineFbank, OnlineFeature | ||
|
||
|
||
def unstack_states( | ||
states: Tuple[List[List[torch.Tensor]], List[torch.Tensor]] | ||
) -> List[Tuple[List[List[torch.Tensor]], List[torch.Tensor]]]: | ||
"""Unstack the emformer state corresponding to a batch of utterances | ||
into a list of states, where the i-th entry is the state from the i-th | ||
utterance in the batch. | ||
Args: | ||
states: | ||
A tuple of 2 elements. | ||
``states[0]`` is the attention caches of a batch of utterance. | ||
``states[1]`` is the convolution caches of a batch of utterance. | ||
``len(states[0])`` and ``len(states[1])`` both eqaul to number of layers. # noqa | ||
Returns: | ||
A list of states. | ||
``states[i]`` is a tuple of 2 elements of i-th utterance. | ||
``states[i][0]`` is the attention caches of i-th utterance. | ||
``states[i][1]`` is the convolution caches of i-th utterance. | ||
``len(states[i][0])`` and ``len(states[i][1])`` both eqaul to number of layers. # noqa | ||
""" | ||
|
||
attn_caches, conv_caches = states | ||
batch_size = conv_caches[0].size(0) | ||
num_layers = len(attn_caches) | ||
|
||
list_attn_caches = [None] * batch_size | ||
for i in range(batch_size): | ||
list_attn_caches[i] = [[] for _ in range(num_layers)] | ||
for li, layer in enumerate(attn_caches): | ||
for s in layer: | ||
s_list = s.unbind(dim=1) | ||
for bi, b in enumerate(list_attn_caches): | ||
b[li].append(s_list[bi]) | ||
|
||
list_conv_caches = [None] * batch_size | ||
for i in range(batch_size): | ||
list_conv_caches[i] = [None] * num_layers | ||
for li, layer in enumerate(conv_caches): | ||
c_list = layer.unbind(dim=0) | ||
for bi, b in enumerate(list_conv_caches): | ||
b[li] = c_list[bi] | ||
|
||
ans = [None] * batch_size | ||
for i in range(batch_size): | ||
ans[i] = [list_attn_caches[i], list_conv_caches[i]] | ||
|
||
return ans | ||
|
||
|
||
def stack_states( | ||
state_list: List[Tuple[List[List[torch.Tensor]], List[torch.Tensor]]] | ||
) -> Tuple[List[List[torch.Tensor]], List[torch.Tensor]]: | ||
"""Stack list of emformer states that correspond to separate utterances | ||
into a single emformer state so that it can be used as an input for | ||
emformer when those utterances are formed into a batch. | ||
Note: | ||
It is the inverse of :func:`unstack_states`. | ||
Args: | ||
state_list: | ||
Each element in state_list corresponding to the internal state | ||
of the emformer model for a single utterance. | ||
``states[i]`` is a tuple of 2 elements of i-th utterance. | ||
``states[i][0]`` is the attention caches of i-th utterance. | ||
``states[i][1]`` is the convolution caches of i-th utterance. | ||
``len(states[i][0])`` and ``len(states[i][1])`` both eqaul to number of layers. # noqa | ||
Returns: | ||
A new state corresponding to a batch of utterances. | ||
See the input argument of :func:`unstack_states` for the meaning | ||
of the returned tensor. | ||
""" | ||
batch_size = len(state_list) | ||
|
||
attn_caches = [] | ||
for layer in state_list[0][0]: | ||
if batch_size > 1: | ||
# Note: We will stack attn_caches[layer][s][] later to get attn_caches[layer][s] # noqa | ||
attn_caches.append([[s] for s in layer]) | ||
else: | ||
attn_caches.append([s.unsqueeze(1) for s in layer]) | ||
for b, states in enumerate(state_list[1:], 1): | ||
for li, layer in enumerate(states[0]): | ||
for si, s in enumerate(layer): | ||
attn_caches[li][si].append(s) | ||
if b == batch_size - 1: | ||
attn_caches[li][si] = torch.stack( | ||
attn_caches[li][si], dim=1 | ||
) | ||
|
||
conv_caches = [] | ||
for layer in state_list[0][1]: | ||
if batch_size > 1: | ||
# Note: We will stack conv_caches[layer][] later to get conv_caches[layer] # noqa | ||
conv_caches.append([layer]) | ||
else: | ||
conv_caches.append(layer.unsqueeze(0)) | ||
for b, states in enumerate(state_list[1:], 1): | ||
for li, layer in enumerate(states[1]): | ||
conv_caches[li].append(layer) | ||
if b == batch_size - 1: | ||
conv_caches[li] = torch.stack(conv_caches[li], dim=0) | ||
|
||
return [attn_caches, conv_caches] | ||
|
||
|
||
def _create_streaming_feature_extractor() -> OnlineFeature: | ||
"""Create a CPU streaming feature extractor. | ||
At present, we assume it returns a fbank feature extractor with | ||
fixed options. In the future, we will support passing in the options | ||
from outside. | ||
Returns: | ||
Return a CPU streaming feature extractor. | ||
""" | ||
opts = FbankOptions() | ||
opts.device = "cpu" | ||
opts.frame_opts.dither = 0 | ||
opts.frame_opts.snip_edges = False | ||
opts.frame_opts.samp_freq = 16000 | ||
opts.mel_opts.num_bins = 80 | ||
return OnlineFbank(opts) | ||
|
||
|
||
class Stream(object): | ||
def __init__( | ||
self, | ||
context_size: int, | ||
blank_id: int, | ||
initial_states: Tuple[List[List[torch.Tensor]], List[torch.Tensor]], | ||
decoder_out: torch.Tensor, | ||
) -> None: | ||
""" | ||
Args: | ||
context_size: | ||
Context size of the RNN-T decoder model. | ||
blank_id: | ||
Blank token ID of the BPE model. | ||
initial_states: | ||
The initial states of the Emformer model. Note that the state | ||
does not contain the batch dimension. | ||
decoder_out: | ||
The initial decoder out corresponding to the decoder input | ||
`[blank_id]*context_size` | ||
""" | ||
self.feature_extractor = _create_streaming_feature_extractor() | ||
# It contains a list of 2-D tensors representing the feature frames. | ||
# Each entry is of shape (1, feature_dim) | ||
self.features: List[torch.Tensor] = [] | ||
self.num_fetched_frames = 0 | ||
|
||
self.num_processed_frames = 0 | ||
|
||
self.states = initial_states | ||
self.decoder_out = decoder_out | ||
|
||
self.context_size = context_size | ||
self.hyp = [blank_id] * context_size | ||
self.log_eps = math.log(1e-10) | ||
|
||
def accept_waveform( | ||
self, | ||
sampling_rate: float, | ||
waveform: torch.Tensor, | ||
) -> None: | ||
"""Feed audio samples to the feature extractor and compute features | ||
if there are enough samples available. | ||
Caution: | ||
The range of the audio samples should match the one used in the | ||
training. That is, if you use the range [-1, 1] in the training, then | ||
the input audio samples should also be normalized to [-1, 1]. | ||
Args | ||
sampling_rate: | ||
The sampling rate of the input audio samples. It is used for sanity | ||
check to ensure that the input sampling rate equals to the one | ||
used in the extractor. If they are not equal, then no resampling | ||
will be performed; instead an error will be thrown. | ||
waveform: | ||
A 1-D torch tensor of dtype torch.float32 containing audio samples. | ||
It should be on CPU. | ||
""" | ||
self.feature_extractor.accept_waveform( | ||
sampling_rate=sampling_rate, | ||
waveform=waveform, | ||
) | ||
self._fetch_frames() | ||
|
||
def input_finished(self) -> None: | ||
"""Signal that no more audio samples available and the feature | ||
extractor should flush the buffered samples to compute frames. | ||
""" | ||
self.feature_extractor.input_finished() | ||
self._fetch_frames() | ||
|
||
def _fetch_frames(self) -> None: | ||
"""Fetch frames from the feature extractor""" | ||
while self.num_fetched_frames < self.feature_extractor.num_frames_ready: | ||
frame = self.feature_extractor.get_frame(self.num_fetched_frames) | ||
self.features.append(frame) | ||
self.num_fetched_frames += 1 | ||
|
||
def add_tail_paddings(self, n: int = 20) -> None: | ||
"""Add some tail paddings so that we have enough context to process | ||
frames at the very end of an utterance. | ||
Args: | ||
n: | ||
Number of tail padding frames to be added. You can increase it if | ||
it happens that there are many missing tokens for the last word of | ||
an utterance. | ||
""" | ||
tail_padding = torch.full( | ||
(1, self.feature_extractor.opts.mel_opts.num_bins), | ||
fill_value=self.log_eps, | ||
dtype=torch.float32, | ||
) | ||
|
||
self.features += [tail_padding] * n |
1 change: 1 addition & 0 deletions
1
sherpa/bin/conv_emformer_transducer_stateless/streaming_client.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1 @@ | ||
../pruned_stateless_emformer_rnnt2/streaming_client.py |
Oops, something went wrong.