Table of Contents
libstreamvbyte
is a C++
implementation of StreamVByte, with Python
bindings using pybind11
.
StreamVByte is an integer compression technique that use SIMD instructions (vectorization) to improve performance. The library is optimized with SSSE3
intrinsics, which are supported by most x86_64
processors. It uses sse2neon
to translate SSSE3
intrinsics to NEON
intrinsics for ARM
processors. The library can also be used with other 32-bit architectures, although it will fall back to scalar implementations in those cases.
With libstreamvbyte
, you can quickly and efficiently compress integer sequences, reducing the amount of storage space and network bandwidth required. The library is easy to use and integrates seamlessly with Python
via pybind11
bindings. Whether you're working with large datasets or building a distributed computing system, libstreamvbyte
can help you improve performance and reduce the resources needed to handle your data.
Currently supports Python 3.8+
on Windows, Linux (manylinux_2_17
, musllinux_1_1
) and macOS (universal2
).
Install from PyPI
using pip
.
pip install libstreamvbyte
Or install from .whl
file.
pip install "path/to/your/downloaded/whl"
To find appropriate .whl
file, please visit releases.
You must have CMake
installed on your system.
# clone the repo
git clone https://github.com/wst24365888/libstreamvbyte
cd libstreamvbyte
# build and install
cmake .
make
sudo make install
Import libstreamvbyte
first.
import libstreamvbyte as svb
And here are the APIs.
# Encode an array of unsigned integers into a byte array.
encode(in_uint32: numpy.ndarray[numpy.uint32]) -> numpy.ndarray[numpy.uint8]
# Decode a byte array into an array of unsigned integers.
decode(in_uint8: numpy.ndarray[numpy.uint8], size: int) -> numpy.ndarray[numpy.uint32]
# Encode an array of signed integers into an array of unsigned integers.
zigzag_encode(in_int32: numpy.ndarray[numpy.int32]) -> numpy.ndarray[numpy.uint32]
# Decode an array of unsigned integers into an array of signed integers.
zigzag_decode(in_uint32: numpy.ndarray[numpy.uint32]) -> numpy.ndarray[numpy.int32]
# Check if the current wheel is a vectorized version.
is_vectorized_version() -> bool
Include streamvbyte.h
first.
#include "streamvbyte.h"
For the APIs, please refer to include/streamvbyte.h.
import libstreamvbyte as svb
N = 2**20 + 2
# type(original_data) == np.ndarray
# original_data.dtype == np.int32
original_data = np.random.randint(-2**31, 2**31, N, dtype=np.int32)
# type(compressed_bytes) == np.ndarray
# compressed_bytes.dtype == np.uint8
compressed_bytes = svb.encode(svb.zigzag_encode(original_data))
# type(recovered_data) == np.ndarray
# recovered_data.dtype == np.int32
recovered_data = svb.zigzag_decode(svb.decode(compressed_bytes, N))
#include "streamvbyte.h"
int main() {
std::size_t N = (1 << 20) + 2;
std::vector<int32_t> original_data(N);
for (std::size_t i = 0; i < N; ++i) {
original_data[i] = rand() - rand();
}
std::vector<uint8_t> compressed_bytes = streamvbyte::encode(streamvbyte::zigzag_encode(original_data));
std::vector<int32_t> recovered_data = streamvbyte::zigzag_decode(streamvbyte::decode(compressed_bytes, N));
return 0;
}
Compile it with linking to libstreamvbyte
.
g++ -o example example.cpp -lstreamvbyte
OS: Linux 5.15.79.1-microsoft-standard-WSL2 x86_64
CPU: AMD Ryzen 5 3600 6-Core Processor (12) @ 3.600GHz
Run on (12 X 3593.26 MHz CPU s)
CPU Caches:
L1 Data 32 KiB (x6)
L1 Instruction 32 KiB (x6)
L2 Unified 512 KiB (x6)
L3 Unified 16384 KiB (x1)
Load Average: 0.81, 0.85, 0.69
-----------------------------------------------------------------------------------
Benchmark Time CPU Iterations Throughput
-----------------------------------------------------------------------------------
BM_memcpy/4096 149 ns 149 ns 4688531 13.7122G/s
BM_memcpy/8192 548 ns 548 ns 1275803 7.46783G/s
BM_memcpy/16384 1139 ns 1138 ns 640835 7.19553G/s
BM_memcpy/32768 2185 ns 2185 ns 320840 7.49932G/s
BM_memcpy/65536 4921 ns 4921 ns 142703 6.65895G/s
BM_memcpy/131072 10968 ns 10968 ns 63502 5.97511G/s
BM_memcpy/262144 22465 ns 22465 ns 31134 5.83457G/s
BM_memcpy/524288 45101 ns 45100 ns 15541 5.81245G/s
BM_memcpy/1048576 91131 ns 91131 ns 7639 5.75314G/s
BM_streamvbyte_encode/4096 1222 ns 1222 ns 580855 1.67556G/s
BM_streamvbyte_encode/8192 2470 ns 2467 ns 282349 1.66064G/s
BM_streamvbyte_encode/16384 4945 ns 4945 ns 139671 1.65662G/s
BM_streamvbyte_encode/32768 9990 ns 9989 ns 70497 1.64017G/s
BM_streamvbyte_encode/65536 19853 ns 19853 ns 30963 1.65051G/s
BM_streamvbyte_encode/131072 39933 ns 39932 ns 17401 1.64118G/s
BM_streamvbyte_encode/262144 80563 ns 80562 ns 8193 1.62697G/s
BM_streamvbyte_encode/524288 160716 ns 160716 ns 4284 1.6311G/s
BM_streamvbyte_encode/1048576 319253 ns 319253 ns 1942 1.64223G/s
BM_streamvbyte_decode/4096 691 ns 691 ns 1040462 2.96191G/s
BM_streamvbyte_decode/8192 1341 ns 1341 ns 516979 3.05539G/s
BM_streamvbyte_decode/16384 2683 ns 2683 ns 261208 3.05359G/s
BM_streamvbyte_decode/32768 5348 ns 5348 ns 130319 3.06353G/s
BM_streamvbyte_decode/65536 10817 ns 10817 ns 64427 3.02936G/s
BM_streamvbyte_decode/131072 23207 ns 23207 ns 31546 2.824G/s
BM_streamvbyte_decode/262144 45746 ns 45746 ns 11291 2.86519G/s
BM_streamvbyte_decode/524288 88660 ns 88660 ns 7947 2.95673G/s
BM_streamvbyte_decode/1048576 178497 ns 178497 ns 3907 2.93724G/s
BM_zigzag_encode/4096 810 ns 810 ns 854076 2.52829G/s
BM_zigzag_encode/8192 1611 ns 1608 ns 433154 2.548G/s
BM_zigzag_encode/16384 3174 ns 3174 ns 219165 2.58084G/s
BM_zigzag_encode/32768 6457 ns 6457 ns 108415 2.53754G/s
BM_zigzag_encode/65536 12582 ns 12582 ns 54747 2.60432G/s
BM_zigzag_encode/131072 25243 ns 25243 ns 27802 2.59617G/s
BM_zigzag_encode/262144 50278 ns 50278 ns 13952 2.60693G/s
BM_zigzag_encode/524288 100563 ns 100562 ns 6932 2.60678G/s
BM_zigzag_encode/1048576 211846 ns 211845 ns 3222 2.47487G/s
BM_zigzag_decode/4096 675 ns 675 ns 1041044 3.03263G/s
BM_zigzag_decode/8192 1342 ns 1342 ns 523553 3.05196G/s
BM_zigzag_decode/16384 2643 ns 2643 ns 265497 3.09905G/s
BM_zigzag_decode/32768 5383 ns 5383 ns 130976 3.04377G/s
BM_zigzag_decode/65536 11474 ns 11474 ns 60817 2.85588G/s
BM_zigzag_decode/131072 21777 ns 21777 ns 32345 3.00944G/s
BM_zigzag_decode/262144 43477 ns 43478 ns 14387 3.0147G/s
BM_zigzag_decode/524288 86120 ns 86120 ns 8145 3.04393G/s
BM_zigzag_decode/1048576 173095 ns 173093 ns 4028 3.02894G/s
The unit of
Throughput
isGB/s
(Giga Bytes per second).
cmake . \
-DCMAKE_BUILD_TYPE=Release \
-DBUILD_SHARED_LIBS=OFF \
-DBUILD_PYBIND11=OFF \
-DPRINT_BENCHMARK=OFF \
-DBUILD_TESTS=ON \
-DBUILD_BENCHMARKS=ON
make libstreamvbyte_benchmarks
./libstreamvbyte_benchmarks --benchmark_counters_tabular=true
- Zigzag encoding/decoding.
- Support ARM processors with
NEON
intrinsics. - Differential coding (delta encoding/decoding).
See the open issues for a full list of proposed features (and known issues).
Contributions are what make the open source community such an amazing place to learn, inspire, and create. Any contributions you make are greatly appreciated.
If you have a suggestion that would make this better, please fork the repo and create a pull request. You can also simply open an issue with the tag "enhancement". Don't forget to give the project a star! Thanks again!
- Fork the Project
- Create your Feature Branch (
git checkout -b feat/amazing-feature
) - Commit your Changes with Conventional Commits
- Push to the Branch (
git push origin feat/amazing-feature
) - Open a Pull Request
Distributed under the MIT License. See LICENSE for more information.
- Daniel Lemire, Nathan Kurz, Christoph Rupp, Stream VByte: Faster Byte-Oriented Integer Compression, Information Processing Letters 130, 2018.
- HSING-HAN, WU (Xyphuz)
- Mail me: [email protected]
- About me: https://www.xyphuz.com
- GitHub: https://github.com/wst24365888