Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

feat(compression): implement tensor decompression in op depthwise conv #3017

Merged
merged 2 commits into from
Dec 16, 2024
Merged
Show file tree
Hide file tree
Changes from 1 commit
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
41 changes: 40 additions & 1 deletion tensorflow/lite/micro/kernels/depthwise_conv.cc
Original file line number Diff line number Diff line change
@@ -1,4 +1,4 @@
/* Copyright 2017 The TensorFlow Authors. All Rights Reserved.
/* Copyright 2024 The TensorFlow Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
Expand Down Expand Up @@ -52,16 +52,37 @@ TfLiteStatus DepthwiseConvEval(TfLiteContext* context, TfLiteNode* node) {
? tflite::micro::GetEvalInput(context, node, kDepthwiseConvBiasTensor)
: nullptr;

#ifdef USE_TFLM_COMPRESSION

MicroContext* micro_context = GetMicroContext(context);

const CompressionTensorData* filter_comp_td =
micro_context->GetTensorCompressionData(node,
kDepthwiseConvWeightsTensor);
const CompressionTensorData* bias_comp_td =
micro_context->GetTensorCompressionData(node, kDepthwiseConvBiasTensor);

#endif // USE_TFLM_COMPRESSION

switch (input->type) { // Already know in/out types are same.
case kTfLiteFloat32: {
tflite::reference_ops::DepthwiseConv(
DepthwiseConvParamsFloat(params, data),
tflite::micro::GetTensorShape(input),
tflite::micro::GetTensorData<float>(input),
tflite::micro::GetTensorShape(filter),
#ifdef USE_TFLM_COMPRESSION
tflite::micro::GetTensorData<float>(micro_context, filter,
filter_comp_td,
data.weights_scratch_index),
tflite::micro::GetTensorShape(bias),
tflite::micro::GetOptionalTensorData<float>(
micro_context, bias, bias_comp_td, data.bias_scratch_index),
#else // USE_TFLM_COMPRESSION
tflite::micro::GetTensorData<float>(filter),
tflite::micro::GetTensorShape(bias),
tflite::micro::GetOptionalTensorData<float>(bias),
#endif // USE_TFLM_COMPRESSION
tflite::micro::GetTensorShape(output),
tflite::micro::GetTensorData<float>(output));
break;
Expand Down Expand Up @@ -94,9 +115,18 @@ TfLiteStatus DepthwiseConvEval(TfLiteContext* context, TfLiteNode* node) {
tflite::micro::GetTensorShape(input),
tflite::micro::GetTensorData<int8_t>(input),
tflite::micro::GetTensorShape(filter),
#ifdef USE_TFLM_COMPRESSION
tflite::micro::GetTensorData<int8_t>(micro_context, filter,
filter_comp_td,
data.weights_scratch_index),
tflite::micro::GetTensorShape(bias),
tflite::micro::GetOptionalTensorData<int32_t>(
micro_context, bias, bias_comp_td, data.bias_scratch_index),
#else // USE_TFLM_COMPRESSION
tflite::micro::GetTensorData<int8_t>(filter),
tflite::micro::GetTensorShape(bias),
tflite::micro::GetOptionalTensorData<int32_t>(bias),
#endif // USE_TFLM_COMPRESSION
tflite::micro::GetTensorShape(output),
tflite::micro::GetTensorData<int8_t>(output));
break;
Expand All @@ -118,9 +148,18 @@ TfLiteStatus DepthwiseConvEval(TfLiteContext* context, TfLiteNode* node) {
tflite::micro::GetTensorShape(input),
tflite::micro::GetTensorData<int16_t>(input),
tflite::micro::GetTensorShape(filter),
#ifdef USE_TFLM_COMPRESSION
tflite::micro::GetTensorData<int8_t>(micro_context, filter,
filter_comp_td,
data.weights_scratch_index),
tflite::micro::GetTensorShape(bias),
tflite::micro::GetOptionalTensorData<int64_t>(
micro_context, bias, bias_comp_td, data.bias_scratch_index),
#else // USE_TFLM_COMPRESSION
tflite::micro::GetTensorData<int8_t>(filter),
tflite::micro::GetTensorShape(bias),
tflite::micro::GetOptionalTensorData<int64_t>(bias),
#endif // USE_TFLM_COMPRESSION
tflite::micro::GetTensorShape(output),
tflite::micro::GetTensorData<int16_t>(output));
break;
Expand Down
23 changes: 21 additions & 2 deletions tensorflow/lite/micro/kernels/depthwise_conv_common.cc
Original file line number Diff line number Diff line change
@@ -1,4 +1,4 @@
/* Copyright 2021 The TensorFlow Authors. All Rights Reserved.
/* Copyright 2024 The TensorFlow Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
Expand Down Expand Up @@ -127,7 +127,9 @@ TfLiteStatus CalculateOpDataDepthwiseConv(

micro_context->DeallocateTempTfLiteTensor(input);
micro_context->DeallocateTempTfLiteTensor(filter);
micro_context->DeallocateTempTfLiteTensor(bias);
if (has_bias) {
micro_context->DeallocateTempTfLiteTensor(bias);
}
micro_context->DeallocateTempTfLiteTensor(output);

return kTfLiteOk;
Expand Down Expand Up @@ -209,6 +211,23 @@ TfLiteStatus DepthwiseConvPrepare(TfLiteContext* context, TfLiteNode* node) {
context, node, params, input_width, input_height, filter_width,
filter_height, output_width, output_height, input->type, data));

#ifdef USE_TFLM_COMPRESSION

// Compression scratch buffers.
// These will only be allocated if the tensor is compressed.
if (micro_context->IsTensorCompressed(node, kDepthwiseConvWeightsTensor) &&
filter->type == kTfLiteInt4) {
MicroPrintf("Compression not supported with INT4 tensors");
return kTfLiteError;
}
data->weights_scratch_index =
micro_context->AllocateDecompressionScratchBuffer(
node, kDepthwiseConvWeightsTensor);
data->bias_scratch_index = micro_context->AllocateDecompressionScratchBuffer(
node, kDepthwiseConvBiasTensor);

#endif // USE_TFLM_COMPRESSION

micro_context->DeallocateTempTfLiteTensor(output);
micro_context->DeallocateTempTfLiteTensor(input);
micro_context->DeallocateTempTfLiteTensor(filter);
Expand Down
Loading
Loading