-
Notifications
You must be signed in to change notification settings - Fork 838
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
d3475aa
commit 26a153e
Showing
40 changed files
with
3,887 additions
and
382 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,94 @@ | ||
load("@flatbuffers//:build_defs.bzl", "flatbuffer_cc_library", "flatbuffer_py_library") | ||
load("@rules_python//python:defs.bzl", "py_test") | ||
load("@tflm_pip_deps//:requirements.bzl", "requirement") | ||
|
||
package( | ||
default_visibility = [ | ||
"//visibility:public", | ||
], | ||
) | ||
|
||
flatbuffer_cc_library( | ||
name = "metadata_flatbuffer_cc", | ||
srcs = ["metadata.fbs"], | ||
) | ||
|
||
flatbuffer_py_library( | ||
name = "original_flatbuffer_py", | ||
srcs = ["original.fbs"], | ||
) | ||
|
||
flatbuffer_py_library( | ||
name = "metadata_flatbuffer_py", | ||
srcs = ["metadata.fbs"], | ||
) | ||
|
||
cc_test( | ||
name = "metadata_test_cc", | ||
srcs = ["metadata_test.cc"], | ||
deps = [ | ||
"metadata_flatbuffer_cc", | ||
"//tensorflow/lite/micro:hexdump", | ||
"@flatbuffers//:runtime_cc", | ||
], | ||
size = "small", | ||
) | ||
|
||
py_binary( | ||
name = "compress", | ||
srcs = ["compress.py"], | ||
deps = [ | ||
"@absl_py//absl:app", | ||
"@absl_py//absl/flags", | ||
"@absl_py//absl/logging", | ||
"@flatbuffers//:runtime_py", | ||
"metadata_flatbuffer_py", | ||
"//tensorflow/lite/python:schema_py", | ||
requirement("bitarray"), | ||
requirement("numpy"), | ||
requirement("scikit-learn"), | ||
], | ||
) | ||
|
||
py_binary( | ||
name = "view", | ||
srcs = [ | ||
"view.py", | ||
], | ||
deps = [ | ||
"metadata_flatbuffer_py", | ||
"//tensorflow/lite/python:schema_py", | ||
], | ||
) | ||
|
||
py_test( | ||
name = "metadata_test_py", | ||
main = "metadata_test.py", | ||
srcs = ["metadata_test.py"], | ||
deps = [ | ||
"metadata_flatbuffer_py", | ||
"@flatbuffers//:runtime_py", | ||
requirement("hexdump"), | ||
], | ||
size = "small", | ||
) | ||
|
||
py_test( | ||
name = "original_test_py", | ||
main = "original_test.py", | ||
srcs = ["original_test.py"], | ||
deps = [ | ||
"original_flatbuffer_py", | ||
"@flatbuffers//:runtime_py", | ||
requirement("hexdump"), | ||
], | ||
size = "small", | ||
) | ||
|
||
genrule( | ||
name = "hello_world_int8.compressed", | ||
srcs = ["//tensorflow/lite/micro/examples/hello_world/models:hello_world_int8.tflite"], | ||
outs = ["hello_world_int8.compressed.tflite"], | ||
cmd = "$(location :compress) --input_model_path $< --output_model_path $@", | ||
tools = [":compress"], | ||
) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,244 @@ | ||
# Copyright 2024 The TensorFlow Authors. All Rights Reserved. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
"""Reduces the number of weights in a .tflite model using various strategies.""" | ||
|
||
# Usage information: | ||
# Default: | ||
# `bazel run tensorflow/lite/micro/tools:compress -- \ | ||
# --input_model_path=</path/to/my_model.tflite>` \ | ||
# --output_model_path=</path/to/output.tflite>` | ||
|
||
|
||
from tensorflow.lite.micro.compression import metadata_flatbuffer_py_generated as compression_schema | ||
from tensorflow.lite.python import schema_py_generated as tflite_schema | ||
|
||
from absl import app | ||
from absl import flags | ||
from absl import logging | ||
import bitarray | ||
import bitarray.util | ||
import numpy as np | ||
import flatbuffers | ||
import sklearn.cluster | ||
import struct | ||
|
||
|
||
_INPUT_MODEL_PATH = flags.DEFINE_string( | ||
"input_model_path", | ||
None, | ||
".tflite input model path", | ||
required=True, | ||
) | ||
|
||
_TEST_COMPRESSED_MODEL = flags.DEFINE_bool( | ||
"test_compressed_model", | ||
False, | ||
"optional config to test models with random data and" | ||
" report on the differences in output.", | ||
) | ||
|
||
_OUTPUT_MODEL_PATH = flags.DEFINE_string( | ||
"output_model_path", | ||
None, | ||
".tflite output path. Leave blank if same as input+.compressed.tflite", | ||
) | ||
|
||
|
||
def read_model(path): | ||
with open(path, 'rb') as file: | ||
buffer = bytearray(file.read()) | ||
return tflite_schema.ModelT.InitFromPackedBuf(buffer, 0) | ||
|
||
|
||
def write_model(model, path): | ||
builder = flatbuffers.Builder(32) | ||
root = model.Pack(builder) | ||
builder.Finish(root) | ||
buffer: bytearray = builder.Output() | ||
|
||
with open(path, 'wb') as file: | ||
file.write(buffer) | ||
|
||
|
||
def pack_compression_metadata(m): | ||
builder = flatbuffers.Builder(32) | ||
root = m.Pack(builder) | ||
builder.Finish(root) | ||
buffer: bytearray = builder.Output() | ||
return buffer | ||
|
||
|
||
def pack_lut_indexes(indexes, bitwidth): | ||
"""Pack the sequence of integers given in `indexes` into bitwidth-wide fields | ||
in a buffer, and return the buffer. Raise an OverflowError if any element | ||
does not fit into a bitwidth-wide field. """ | ||
ba = bitarray.bitarray(endian="big") | ||
for i in indexes: | ||
field = bitarray.util.int2ba(i, length=bitwidth, endian="big") | ||
ba.extend(field) | ||
return ba.tobytes() | ||
|
||
|
||
def pack_lut_values(values, struct_format): | ||
"""Pack the `values` into a buffer of bytes, using a `struct_format` | ||
character from the standard module `struct` to determine the type of values | ||
and corresponding encoding into bytes. Always little-endian byte order. | ||
""" | ||
buffer = bytearray() | ||
little_endian = "<" | ||
packer = struct.Struct(little_endian + struct_format) | ||
for v in values: | ||
buffer.extend(packer.pack(v)) | ||
return buffer | ||
|
||
|
||
def unpack_buffer_values(data, struct_format): | ||
little_endian = "<" | ||
unpacker = struct.Struct(little_endian + struct_format) | ||
values = [v[0] for v in unpacker.iter_unpack(bytes(data))] | ||
return values | ||
|
||
|
||
def tensor_type_to_struct_format(type): | ||
m = { | ||
tflite_schema.TensorType.INT8: "b", | ||
tflite_schema.TensorType.INT16: "h", | ||
tflite_schema.TensorType.FLOAT32: "f", | ||
} | ||
return m[type] | ||
|
||
|
||
def bq(sequence, num_values): | ||
"""Quantize a sequence of integers, minimizing the total error using k-means | ||
clustering. | ||
Parameters: | ||
sequence :list - a sequence of integers to be quanized | ||
num_values :int - the number of quantization levels | ||
Returns: | ||
(indexes, values): a tuple with the list of indexes and list of values | ||
""" | ||
sequence = np.array(sequence).reshape(-1, 1) | ||
kmeans = sklearn.cluster.KMeans(n_clusters=num_values, | ||
random_state=0).fit(sequence) | ||
values = kmeans.cluster_centers_.flatten() | ||
values = np.round(values).astype(int).tolist() | ||
indexes = kmeans.predict(sequence).tolist() | ||
return (indexes, values) | ||
|
||
|
||
def compress_tensor(subgraph_id, tensor_id, model): | ||
subgraph = model.subgraphs[subgraph_id] | ||
tensor = subgraph.tensors[tensor_id] | ||
struct_format = tensor_type_to_struct_format(tensor.type) | ||
buffer_id = tensor.buffer | ||
buffer = model.buffers[buffer_id] | ||
sequence = unpack_buffer_values(buffer.data, struct_format) | ||
bitwidth = 2 | ||
indexes, values = bq(sequence, 2 ** bitwidth) | ||
|
||
# append index buffer | ||
buffer = tflite_schema.BufferT() | ||
buffer.data = pack_lut_indexes(indexes, bitwidth) | ||
model.buffers.append(buffer) | ||
index_id = len(model.buffers) - 1 | ||
|
||
# append value buffer | ||
buffer = tflite_schema.BufferT() | ||
buffer.data = pack_lut_values(values, struct_format) | ||
model.buffers.append(buffer) | ||
value_id = len(model.buffers) - 1 | ||
|
||
# create metadata | ||
lut_tensor = compression_schema.LutTensorT() | ||
lut_tensor.subgraph = subgraph_id | ||
lut_tensor.tensor = tensor_id | ||
lut_tensor.indexBitwidth = bitwidth | ||
lut_tensor.indexBuffer = index_id | ||
lut_tensor.valueBuffer = value_id | ||
|
||
return lut_tensor | ||
|
||
|
||
def compress_fully_connected(subgraph_id, operator_id, model): | ||
# On a fully_connected operator, we compress the 2nd | ||
subgraph = model.subgraphs[subgraph_id] | ||
operator = subgraph.operators[operator_id] | ||
tensor_id_2 = operator.inputs[1] | ||
# tensor_id_3 = operator.inputs[2] | ||
lut_tensor_2 = compress_tensor(subgraph_id, tensor_id_2, model) | ||
# lut_tensor_3 = compress_tensor(subgraph_id, tensor_id_2, model) | ||
return (lut_tensor_2,) | ||
|
||
|
||
def get_opcode_compressions(model): | ||
"""Return a map of operator_code indexes to compression functions, for those | ||
operators we wish to and know how to compress. | ||
""" | ||
compressable = {tflite_schema.BuiltinOperator.FULLY_CONNECTED: compress_fully_connected} | ||
compressions = {} | ||
for index, code in enumerate(model.operatorCodes): | ||
if code.builtinCode in compressable: | ||
compressions[index] = compressable[code.builtinCode] | ||
return compressions | ||
|
||
|
||
def compress(model): | ||
# Walk op codes, identify those we compress, note index | ||
# Walk operators, match op code indexes, note tensors to compress | ||
# Walk those tensors, creating LUTs in buffers and metadata | ||
|
||
compressions = get_opcode_compressions(model) | ||
|
||
lut_tensors = [] | ||
|
||
for subgraph_id, subgraph in enumerate(model.subgraphs): | ||
for operator_id, operator in enumerate(subgraph.operators): | ||
fn = compressions.get(operator.opcodeIndex) | ||
if fn is not None: | ||
result = fn(subgraph_id, operator_id, model) | ||
if result is not None: | ||
lut_tensors.extend(result) | ||
|
||
compression_metadata = compression_schema.MetadataT() | ||
compression_metadata.lutTensors = lut_tensors | ||
|
||
return compression_metadata | ||
|
||
|
||
def main(_) -> None: | ||
output_model_path = _OUTPUT_MODEL_PATH.value or ( | ||
_INPUT_MODEL_PATH.value.split(".tflite")[0] + ".compressed.tflite") | ||
logging.info("compressing %s to %s", _INPUT_MODEL_PATH.value, output_model_path) | ||
|
||
model = read_model(_INPUT_MODEL_PATH.value) | ||
|
||
compression_metadata = compress(model) | ||
|
||
buffer = tflite_schema.BufferT() | ||
buffer.data = pack_compression_metadata(compression_metadata) | ||
model.buffers.append(buffer) | ||
|
||
metadata = tflite_schema.MetadataT() | ||
metadata.name = "COMPRESSION_METADATA" | ||
metadata.buffer = len(model.buffers) - 1 | ||
model.metadata.append(metadata) | ||
|
||
write_model(model, output_model_path) | ||
|
||
|
||
if __name__ == "__main__": | ||
app.run(main) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,38 @@ | ||
// Copyright 2024 The TensorFlow Authors. All Rights Reserved. | ||
// | ||
// Licensed under the Apache License, Version 2.0 (the "License"); | ||
// you may not use this file except in compliance with the License. | ||
// You may obtain a copy of the License at | ||
// | ||
// http://www.apache.org/licenses/LICENSE-2.0 | ||
// | ||
// Unless required by applicable law or agreed to in writing, software | ||
// distributed under the License is distributed on an "AS IS" BASIS, | ||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
// See the License for the specific language governing permissions and | ||
// limitations under the License. | ||
|
||
// Flatbuffer schema describing a TFLM compressed model. Use as the value for | ||
// the key "TFLM_COMPRESSION" in the metadata table in a .tflite flatbuffer. | ||
|
||
namespace tflite.micro.compression; | ||
|
||
table Metadata { | ||
lut_tensors:[LutTensor]; // list of tensors that are compressed by LUT | ||
} | ||
|
||
struct LutTensor { | ||
subgraph:uint16; // the index of the subgraph | ||
tensor:uint16; // the index of the tensor in its subgraph | ||
index_bitwidth:uint8; // the bit-width of LUT indexes | ||
index_buffer:uint16; // the index of the buffer containing LUT indexes | ||
value_buffer:uint16; // the index of the buffer containing LUT values | ||
} | ||
// Look-Up-Table tensors are encoded in two buffers: an index buffer and a | ||
// value buffer. The indexes are unsigned integers packed into the index buffer | ||
// in bitwidth-wide bit fields with a big-endian bit order. The data in the | ||
// value buffer is encoded as usual according to the type of the tensor. | ||
// Tensors with multiple channels have distinct values tables for each channel, | ||
// concatinated into one value buffer. (Will elaborate this comment.) | ||
|
||
root_type Metadata; |
Oops, something went wrong.