-
Notifications
You must be signed in to change notification settings - Fork 16
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #375 from Snehil-Shah/clustering
[81] - add operator to cluster embeddings
- Loading branch information
Showing
4 changed files
with
287 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,112 @@ | ||
""" | ||
Operator to cluster embeddings using KMeans, Affinity Propagation, and Agglomerative clustering algorithms | ||
""" | ||
|
||
def initialize(param): | ||
""" | ||
Initializes the operator. | ||
Args: | ||
param (dict): Parameters for initialization | ||
""" | ||
global KMeans_clustering, Agglomerative_clustering, AffinityPropagation_clustering | ||
global gen_data | ||
|
||
# Imports | ||
from sklearn.cluster import KMeans, AffinityPropagation, AgglomerativeClustering | ||
import numpy as np | ||
|
||
# Constants | ||
RANDOM_STATE = 50 | ||
|
||
def gen_data(payloads, labels): | ||
""" | ||
Generates formatted output data. | ||
Args: | ||
payloads (list): List of payloads | ||
labels (np.ndarray): An array of cluster labels | ||
Returns: | ||
dict: A dictionary mapping cluster labels to corresponding array of payloads | ||
""" | ||
out = {} | ||
for label, payload in zip(labels, payloads): | ||
key = f'cluster_{label}' | ||
if key not in out: | ||
out[key] = [] | ||
out[key].append(payload) | ||
return out | ||
|
||
def KMeans_clustering(matrix, n_clusters): | ||
""" | ||
Clusters given embeddings using KMeans clustering algorithm. | ||
Args: | ||
matrix (list[list]): list of embeddings | ||
n_clusters (int): number of clusters | ||
Returns: | ||
numpy.ndarray: An array of cluster labels for each embedding | ||
""" | ||
return KMeans(n_clusters=n_clusters, random_state=RANDOM_STATE).fit_predict(np.array(matrix)) | ||
|
||
def Agglomerative_clustering(matrix, n_clusters): | ||
""" | ||
Clusters given embeddings using Agglomerative clustering algorithm. | ||
Args: | ||
matrix (list[list]): list of embeddings | ||
n_clusters (int): number of clusters | ||
Returns: | ||
numpy.ndarray: An array of cluster labels for each embedding | ||
""" | ||
return AgglomerativeClustering(n_clusters=n_clusters).fit_predict(np.array(matrix)) | ||
|
||
def AffinityPropagation_clustering(matrix): | ||
""" | ||
Clusters given embeddings using Affinity Propagation algorithm (used if the number of clusters is unknown). | ||
Args: | ||
matrix (list[list]): list of embeddings | ||
Returns: | ||
numpy.ndarray: An array of cluster labels for each embedding | ||
""" | ||
return AffinityPropagation(random_state=RANDOM_STATE).fit_predict(np.array(matrix)) | ||
|
||
def run(input_data, n_clusters=None, modality='audio'): | ||
""" | ||
Runs the operator. | ||
Args: | ||
input_data (list[dict]): List of data with each dictionary containing `embedding` and `payload` properties | ||
n_clusters (int, optional): Number of clusters. Defaults to None | ||
modality (str, optional): Source modality of embeddings. Defaults to 'audio' | ||
Returns: | ||
dict: A dictionary mapping cluster labels to corresponding array of payloads | ||
Raises: | ||
ValueError: Modality should be either `audio` or `video` | ||
KeyError: Each data point in input must have `embedding` and `payload` properties | ||
""" | ||
# Parse data: | ||
try: | ||
matrix, payloads = zip(*[(data['embedding'], data['payload']) for data in input_data]) | ||
except KeyError as e: | ||
raise KeyError(f"Invalid data. Each data point in input must have `embedding` and `payload` properties. Missing key: {e}.") | ||
|
||
# Delegate appropriate clustering algorithm for the given params: | ||
if n_clusters: | ||
n_clusters = int(n_clusters) # cast it to int | ||
if modality == 'audio': | ||
labels = KMeans_clustering(matrix=matrix, n_clusters=n_clusters) | ||
elif modality == 'video': | ||
labels = Agglomerative_clustering(matrix=matrix, n_clusters=n_clusters) | ||
else: | ||
raise ValueError("Invalid modality. Modality should be either `audio` or `video`.") | ||
else: | ||
labels = AffinityPropagation_clustering(matrix=matrix) | ||
return gen_data(payloads=payloads, labels=labels) # format output |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,2 @@ | ||
scikit-learn==1.5.1 | ||
numpy==2.1.0 |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,129 @@ | ||
# | ||
# This file is autogenerated by pip-compile with Python 3.11 | ||
# by the following command: | ||
# | ||
# pip-compile --allow-unsafe --generate-hashes cluster_embeddings_requirements.in | ||
# | ||
joblib==1.4.2 \ | ||
--hash=sha256:06d478d5674cbc267e7496a410ee875abd68e4340feff4490bcb7afb88060ae6 \ | ||
--hash=sha256:2382c5816b2636fbd20a09e0f4e9dad4736765fdfb7dca582943b9c1366b3f0e | ||
# via scikit-learn | ||
numpy==2.1.0 \ | ||
--hash=sha256:08801848a40aea24ce16c2ecde3b756f9ad756586fb2d13210939eb69b023f5b \ | ||
--hash=sha256:0937e54c09f7a9a68da6889362ddd2ff584c02d015ec92672c099b61555f8911 \ | ||
--hash=sha256:0ab32eb9170bf8ffcbb14f11613f4a0b108d3ffee0832457c5d4808233ba8977 \ | ||
--hash=sha256:0abb3916a35d9090088a748636b2c06dc9a6542f99cd476979fb156a18192b84 \ | ||
--hash=sha256:0af3a5987f59d9c529c022c8c2a64805b339b7ef506509fba7d0556649b9714b \ | ||
--hash=sha256:10e2350aea18d04832319aac0f887d5fcec1b36abd485d14f173e3e900b83e33 \ | ||
--hash=sha256:15ef8b2177eeb7e37dd5ef4016f30b7659c57c2c0b57a779f1d537ff33a72c7b \ | ||
--hash=sha256:1f817c71683fd1bb5cff1529a1d085a57f02ccd2ebc5cd2c566f9a01118e3b7d \ | ||
--hash=sha256:24003ba8ff22ea29a8c306e61d316ac74111cebf942afbf692df65509a05f111 \ | ||
--hash=sha256:30014b234f07b5fec20f4146f69e13cfb1e33ee9a18a1879a0142fbb00d47673 \ | ||
--hash=sha256:343e3e152bf5a087511cd325e3b7ecfd5b92d369e80e74c12cd87826e263ec06 \ | ||
--hash=sha256:378cb4f24c7d93066ee4103204f73ed046eb88f9ad5bb2275bb9fa0f6a02bd36 \ | ||
--hash=sha256:398049e237d1aae53d82a416dade04defed1a47f87d18d5bd615b6e7d7e41d1f \ | ||
--hash=sha256:3a3336fbfa0d38d3deacd3fe7f3d07e13597f29c13abf4d15c3b6dc2291cbbdd \ | ||
--hash=sha256:442596f01913656d579309edcd179a2a2f9977d9a14ff41d042475280fc7f34e \ | ||
--hash=sha256:44e44973262dc3ae79e9063a1284a73e09d01b894b534a769732ccd46c28cc62 \ | ||
--hash=sha256:54139e0eb219f52f60656d163cbe67c31ede51d13236c950145473504fa208cb \ | ||
--hash=sha256:5474dad8c86ee9ba9bb776f4b99ef2d41b3b8f4e0d199d4f7304728ed34d0300 \ | ||
--hash=sha256:54c6a63e9d81efe64bfb7bcb0ec64332a87d0b87575f6009c8ba67ea6374770b \ | ||
--hash=sha256:624884b572dff8ca8f60fab591413f077471de64e376b17d291b19f56504b2bb \ | ||
--hash=sha256:6326ab99b52fafdcdeccf602d6286191a79fe2fda0ae90573c5814cd2b0bc1b8 \ | ||
--hash=sha256:652e92fc409e278abdd61e9505649e3938f6d04ce7ef1953f2ec598a50e7c195 \ | ||
--hash=sha256:6c1de77ded79fef664d5098a66810d4d27ca0224e9051906e634b3f7ead134c2 \ | ||
--hash=sha256:76368c788ccb4f4782cf9c842b316140142b4cbf22ff8db82724e82fe1205dce \ | ||
--hash=sha256:7a894c51fd8c4e834f00ac742abad73fc485df1062f1b875661a3c1e1fb1c2f6 \ | ||
--hash=sha256:7dc90da0081f7e1da49ec4e398ede6a8e9cc4f5ebe5f9e06b443ed889ee9aaa2 \ | ||
--hash=sha256:848c6b5cad9898e4b9ef251b6f934fa34630371f2e916261070a4eb9092ffd33 \ | ||
--hash=sha256:899da829b362ade41e1e7eccad2cf274035e1cb36ba73034946fccd4afd8606b \ | ||
--hash=sha256:8ab81ccd753859ab89e67199b9da62c543850f819993761c1e94a75a814ed667 \ | ||
--hash=sha256:8fb49a0ba4d8f41198ae2d52118b050fd34dace4b8f3fb0ee34e23eb4ae775b1 \ | ||
--hash=sha256:9156ca1f79fc4acc226696e95bfcc2b486f165a6a59ebe22b2c1f82ab190384a \ | ||
--hash=sha256:9523f8b46485db6939bd069b28b642fec86c30909cea90ef550373787f79530e \ | ||
--hash=sha256:a0756a179afa766ad7cb6f036de622e8a8f16ffdd55aa31f296c870b5679d745 \ | ||
--hash=sha256:a0cdef204199278f5c461a0bed6ed2e052998276e6d8ab2963d5b5c39a0500bc \ | ||
--hash=sha256:ab83adc099ec62e044b1fbb3a05499fa1e99f6d53a1dde102b2d85eff66ed324 \ | ||
--hash=sha256:b34fa5e3b5d6dc7e0a4243fa0f81367027cb6f4a7215a17852979634b5544ee0 \ | ||
--hash=sha256:b47c551c6724960479cefd7353656498b86e7232429e3a41ab83be4da1b109e8 \ | ||
--hash=sha256:c4cd94dfefbefec3f8b544f61286584292d740e6e9d4677769bc76b8f41deb02 \ | ||
--hash=sha256:c4f982715e65036c34897eb598d64aef15150c447be2cfc6643ec7a11af06574 \ | ||
--hash=sha256:d8f699a709120b220dfe173f79c73cb2a2cab2c0b88dd59d7b49407d032b8ebd \ | ||
--hash=sha256:dd94ce596bda40a9618324547cfaaf6650b1a24f5390350142499aa4e34e53d1 \ | ||
--hash=sha256:de844aaa4815b78f6023832590d77da0e3b6805c644c33ce94a1e449f16d6ab5 \ | ||
--hash=sha256:e5f0642cdf4636198a4990de7a71b693d824c56a757862230454629cf62e323d \ | ||
--hash=sha256:f07fa2f15dabe91259828ce7d71b5ca9e2eb7c8c26baa822c825ce43552f4883 \ | ||
--hash=sha256:f15976718c004466406342789f31b6673776360f3b1e3c575f25302d7e789575 \ | ||
--hash=sha256:f358ea9e47eb3c2d6eba121ab512dfff38a88db719c38d1e67349af210bc7529 \ | ||
--hash=sha256:f505264735ee074250a9c78247ee8618292091d9d1fcc023290e9ac67e8f1afa \ | ||
--hash=sha256:f5ebbf9fbdabed208d4ecd2e1dfd2c0741af2f876e7ae522c2537d404ca895c3 \ | ||
--hash=sha256:f6b26e6c3b98adb648243670fddc8cab6ae17473f9dc58c51574af3e64d61211 \ | ||
--hash=sha256:f8e93a01a35be08d31ae33021e5268f157a2d60ebd643cfc15de6ab8e4722eb1 \ | ||
--hash=sha256:fe76d75b345dc045acdbc006adcb197cc680754afd6c259de60d358d60c93736 \ | ||
--hash=sha256:ffbd6faeb190aaf2b5e9024bac9622d2ee549b7ec89ef3a9373fa35313d44e0e | ||
# via | ||
# -r cluster_embeddings_requirements.in | ||
# scikit-learn | ||
# scipy | ||
scikit-learn==1.5.1 \ | ||
--hash=sha256:0828673c5b520e879f2af6a9e99eee0eefea69a2188be1ca68a6121b809055c1 \ | ||
--hash=sha256:0ea5d40c0e3951df445721927448755d3fe1d80833b0b7308ebff5d2a45e6414 \ | ||
--hash=sha256:10e49170691514a94bb2e03787aa921b82dbc507a4ea1f20fd95557862c98dc1 \ | ||
--hash=sha256:154297ee43c0b83af12464adeab378dee2d0a700ccd03979e2b821e7dd7cc1c2 \ | ||
--hash=sha256:161808750c267b77b4a9603cf9c93579c7a74ba8486b1336034c2f1579546d21 \ | ||
--hash=sha256:1bd8d3a19d4bd6dc5a7d4f358c8c3a60934dc058f363c34c0ac1e9e12a31421d \ | ||
--hash=sha256:1ff4ba34c2abff5ec59c803ed1d97d61b036f659a17f55be102679e88f926fac \ | ||
--hash=sha256:508907e5f81390e16d754e8815f7497e52139162fd69c4fdbd2dfa5d6cc88915 \ | ||
--hash=sha256:5944ce1faada31c55fb2ba20a5346b88e36811aab504ccafb9f0339e9f780395 \ | ||
--hash=sha256:5f57428de0c900a98389c4a433d4a3cf89de979b3aa24d1c1d251802aa15e44d \ | ||
--hash=sha256:689b6f74b2c880276e365fe84fe4f1befd6a774f016339c65655eaff12e10cbf \ | ||
--hash=sha256:781586c414f8cc58e71da4f3d7af311e0505a683e112f2f62919e3019abd3745 \ | ||
--hash=sha256:7b073a27797a283187a4ef4ee149959defc350b46cbf63a84d8514fe16b69855 \ | ||
--hash=sha256:88e0672c7ac21eb149d409c74cc29f1d611d5158175846e7a9c2427bd12b3956 \ | ||
--hash=sha256:909144d50f367a513cee6090873ae582dba019cb3fca063b38054fa42704c3a4 \ | ||
--hash=sha256:97625f217c5c0c5d0505fa2af28ae424bd37949bb2f16ace3ff5f2f81fb4498b \ | ||
--hash=sha256:9a07f90846313a7639af6a019d849ff72baadfa4c74c778821ae0fad07b7275b \ | ||
--hash=sha256:b59e3e62d2be870e5c74af4e793293753565c7383ae82943b83383fdcf5cc5c1 \ | ||
--hash=sha256:b5e865e9bd59396220de49cb4a57b17016256637c61b4c5cc81aaf16bc123bbe \ | ||
--hash=sha256:da3f404e9e284d2b0a157e1b56b6566a34eb2798205cba35a211df3296ab7a74 \ | ||
--hash=sha256:f5b213bc29cc30a89a3130393b0e39c847a15d769d6e59539cd86b75d276b1a7 | ||
# via -r cluster_embeddings_requirements.in | ||
scipy==1.14.1 \ | ||
--hash=sha256:0c2f95de3b04e26f5f3ad5bb05e74ba7f68b837133a4492414b3afd79dfe540e \ | ||
--hash=sha256:1729560c906963fc8389f6aac023739ff3983e727b1a4d87696b7bf108316a79 \ | ||
--hash=sha256:278266012eb69f4a720827bdd2dc54b2271c97d84255b2faaa8f161a158c3b37 \ | ||
--hash=sha256:2843f2d527d9eebec9a43e6b406fb7266f3af25a751aa91d62ff416f54170bc5 \ | ||
--hash=sha256:2da0469a4ef0ecd3693761acbdc20f2fdeafb69e6819cc081308cc978153c675 \ | ||
--hash=sha256:2ff0a7e01e422c15739ecd64432743cf7aae2b03f3084288f399affcefe5222d \ | ||
--hash=sha256:2ff38e22128e6c03ff73b6bb0f85f897d2362f8c052e3b8ad00532198fbdae3f \ | ||
--hash=sha256:30ac8812c1d2aab7131a79ba62933a2a76f582d5dbbc695192453dae67ad6310 \ | ||
--hash=sha256:3a1b111fac6baec1c1d92f27e76511c9e7218f1695d61b59e05e0fe04dc59617 \ | ||
--hash=sha256:4079b90df244709e675cdc8b93bfd8a395d59af40b72e339c2287c91860deb8e \ | ||
--hash=sha256:5149e3fd2d686e42144a093b206aef01932a0059c2a33ddfa67f5f035bdfe13e \ | ||
--hash=sha256:5a275584e726026a5699459aa72f828a610821006228e841b94275c4a7c08417 \ | ||
--hash=sha256:631f07b3734d34aced009aaf6fedfd0eb3498a97e581c3b1e5f14a04164a456d \ | ||
--hash=sha256:716e389b694c4bb564b4fc0c51bc84d381735e0d39d3f26ec1af2556ec6aad94 \ | ||
--hash=sha256:8426251ad1e4ad903a4514712d2fa8fdd5382c978010d1c6f5f37ef286a713ad \ | ||
--hash=sha256:8475230e55549ab3f207bff11ebfc91c805dc3463ef62eda3ccf593254524ce8 \ | ||
--hash=sha256:8bddf15838ba768bb5f5083c1ea012d64c9a444e16192762bd858f1e126196d0 \ | ||
--hash=sha256:8e32dced201274bf96899e6491d9ba3e9a5f6b336708656466ad0522d8528f69 \ | ||
--hash=sha256:8f9ea80f2e65bdaa0b7627fb00cbeb2daf163caa015e59b7516395fe3bd1e066 \ | ||
--hash=sha256:97c5dddd5932bd2a1a31c927ba5e1463a53b87ca96b5c9bdf5dfd6096e27efc3 \ | ||
--hash=sha256:a49f6ed96f83966f576b33a44257d869756df6cf1ef4934f59dd58b25e0327e5 \ | ||
--hash=sha256:af29a935803cc707ab2ed7791c44288a682f9c8107bc00f0eccc4f92c08d6e07 \ | ||
--hash=sha256:b05d43735bb2f07d689f56f7b474788a13ed8adc484a85aa65c0fd931cf9ccd2 \ | ||
--hash=sha256:b28d2ca4add7ac16ae8bb6632a3c86e4b9e4d52d3e34267f6e1b0c1f8d87e389 \ | ||
--hash=sha256:b99722ea48b7ea25e8e015e8341ae74624f72e5f21fc2abd45f3a93266de4c5d \ | ||
--hash=sha256:baff393942b550823bfce952bb62270ee17504d02a1801d7fd0719534dfb9c84 \ | ||
--hash=sha256:c0ee987efa6737242745f347835da2cc5bb9f1b42996a4d97d5c7ff7928cb6f2 \ | ||
--hash=sha256:d0d2821003174de06b69e58cef2316a6622b60ee613121199cb2852a873f8cf3 \ | ||
--hash=sha256:e0cf28db0f24a38b2a0ca33a85a54852586e43cf6fd876365c86e0657cfe7d73 \ | ||
--hash=sha256:e4f5a7c49323533f9103d4dacf4e4f07078f360743dec7f7596949149efeec06 \ | ||
--hash=sha256:eb58ca0abd96911932f688528977858681a59d61a7ce908ffd355957f7025cfc \ | ||
--hash=sha256:edaf02b82cd7639db00dbff629995ef185c8df4c3ffa71a5562a595765a06ce1 \ | ||
--hash=sha256:fef8c87f8abfb884dac04e97824b61299880c43f4ce675dd2cbeadd3c9b466d2 | ||
# via scikit-learn | ||
threadpoolctl==3.5.0 \ | ||
--hash=sha256:082433502dd922bf738de0d8bcc4fdcbf0979ff44c42bd40f5af8a282f6fa107 \ | ||
--hash=sha256:56c1e26c150397e58c4926da8eeee87533b1e32bef131bd4bf6a2f45f3185467 | ||
# via scikit-learn |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,44 @@ | ||
import unittest | ||
from core.operators import cluster_embeddings | ||
|
||
# Test constants | ||
MOCK_DATA = [ | ||
{"payload": "A", "embedding": [0, 1]}, | ||
{"payload": "B", "embedding": [1, 0]}, | ||
{"payload": "C", "embedding": [100, 101]}, | ||
{"payload": "D", "embedding": [101, 100]} | ||
] | ||
EXPECTED_CLUSTERS = [["A", "B"], ["C", "D"]] | ||
|
||
class Test(unittest.TestCase): | ||
@classmethod | ||
def setUpClass(cls): | ||
# initialize operator | ||
param = {} | ||
cluster_embeddings.initialize(param) | ||
|
||
@classmethod | ||
def tearDownClass(cls): | ||
# delete config files | ||
pass | ||
|
||
def test_kmeans_clustering(self): | ||
result = cluster_embeddings.run(input_data=MOCK_DATA, n_clusters=2, modality="audio") | ||
self.assertIn("cluster_0", result) | ||
self.assertIn("cluster_1", result) | ||
self.assertEqual(len(result), 2) | ||
self.assertCountEqual([result["cluster_0"], result["cluster_1"]], EXPECTED_CLUSTERS) | ||
|
||
def test_agglomerative_clustering(self): | ||
result = cluster_embeddings.run(input_data=MOCK_DATA, n_clusters=2, modality="video") | ||
self.assertIn("cluster_0", result) | ||
self.assertIn("cluster_1", result) | ||
self.assertEqual(len(result), 2) | ||
self.assertCountEqual([result["cluster_0"], result["cluster_1"]], EXPECTED_CLUSTERS) | ||
|
||
def test_affinity_propagation(self): | ||
result = cluster_embeddings.run(input_data=MOCK_DATA, n_clusters=None, modality="audio") | ||
self.assertIn("cluster_0", result) | ||
self.assertIn("cluster_1", result) | ||
self.assertEqual(len(result), 2) | ||
self.assertCountEqual([result["cluster_0"], result["cluster_1"]], EXPECTED_CLUSTERS) |