Skip to content

A helpful 4-page data science cheatsheet to assist with exam reviews, interview prep, and anything in-between.

Notifications You must be signed in to change notification settings

sailfish009/Data-Science-Cheatsheet

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

19 Commits
 
 
 
 
 
 
 
 

Repository files navigation

Data Science Cheatsheet 2.0

A helpful 4-page data science cheatsheet to assist with exam reviews, interview prep, and anything in-between. This resource is not meant to be a comprehensive deep dive into any specific model, but rather a quick refresher on a few of the most fundamental machine learning algorithms. The reader should have at least a basic understanding of statistics and linear algebra, though beginners may find this cheatsheet helpful as well.

Inspired by Maverick's Data Science Cheatsheet (hence the 2.0 in the name), located here.

Topics covered (some more in-depth than others) include:

  • Common Distributions
  • Linear and Logistic Regression
  • Decision Trees and Random Forest
  • SVM
  • KNN
  • Clustering
  • Boosting
  • Dimension Reduction (PCA, LDA, Factor Analysis)
  • NLP
  • Neural Networks
  • Recommender Systems
  • Reinforcement Learning
  • Anomaly Detection

Links

Screenshots

Why is Python/SQL not covered in this cheatsheet?

I planned for this resource to cover mainly algorithms, models, and concepts, as these rarely change and are common throughout industries. Technical languages and data structures often vary by job function, and refreshing these skills may make more sense on keyboard than on paper.

License

This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License

Creative Commons License

Contact

Feel free to suggest comments, updates, and potential improvements!

Aaron Wang: Reach out via LinkedIn

About

A helpful 4-page data science cheatsheet to assist with exam reviews, interview prep, and anything in-between.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • TeX 100.0%