Skip to content

Commit

Permalink
Auto merge of #95971 - workingjubilee:no-weird-fp-in-const, r=oli-obk
Browse files Browse the repository at this point in the history
No "weird" floats in const fn {from,to}_bits

I suspect this code is subtly incorrect and that we don't even e.g. use x87-style floats in CTFE, so I don't have to guard against that case. A future PR will be hopefully removing them from concern entirely, anyways. But at the moment I wanted to get this rolling because small questions like that one seem best answered by review.

r? `@oli-obk`
cc `@eddyb` `@thomcc`
  • Loading branch information
bors committed Apr 23, 2022
2 parents c212fc4 + 4da8682 commit 1e9aa8a
Show file tree
Hide file tree
Showing 5 changed files with 479 additions and 48 deletions.
167 changes: 158 additions & 9 deletions library/core/src/num/f32.rs
Original file line number Diff line number Diff line change
Expand Up @@ -449,7 +449,8 @@ impl f32 {
#[inline]
#[rustc_const_unstable(feature = "const_float_classify", issue = "72505")]
pub(crate) const fn abs_private(self) -> f32 {
f32::from_bits(self.to_bits() & 0x7fff_ffff)
// SAFETY: This transmutation is fine. Probably. For the reasons std is using it.
unsafe { mem::transmute::<u32, f32>(mem::transmute::<f32, u32>(self) & 0x7fff_ffff) }
}

/// Returns `true` if this value is positive infinity or negative infinity, and
Expand All @@ -472,7 +473,10 @@ impl f32 {
#[rustc_const_unstable(feature = "const_float_classify", issue = "72505")]
#[inline]
pub const fn is_infinite(self) -> bool {
self.abs_private() == Self::INFINITY
// Getting clever with transmutation can result in incorrect answers on some FPUs
// FIXME: alter the Rust <-> Rust calling convention to prevent this problem.
// See https://github.com/rust-lang/rust/issues/72327
(self == f32::INFINITY) | (self == f32::NEG_INFINITY)
}

/// Returns `true` if this number is neither infinite nor `NaN`.
Expand Down Expand Up @@ -568,15 +572,76 @@ impl f32 {
#[stable(feature = "rust1", since = "1.0.0")]
#[rustc_const_unstable(feature = "const_float_classify", issue = "72505")]
pub const fn classify(self) -> FpCategory {
// A previous implementation tried to only use bitmask-based checks,
// using f32::to_bits to transmute the float to its bit repr and match on that.
// Unfortunately, floating point numbers can be much worse than that.
// This also needs to not result in recursive evaluations of f64::to_bits.
//
// On some processors, in some cases, LLVM will "helpfully" lower floating point ops,
// in spite of a request for them using f32 and f64, to things like x87 operations.
// These have an f64's mantissa, but can have a larger than normal exponent.
// FIXME(jubilee): Using x87 operations is never necessary in order to function
// on x86 processors for Rust-to-Rust calls, so this issue should not happen.
// Code generation should be adjusted to use non-C calling conventions, avoiding this.
//
if self.is_infinite() {
// Thus, a value may compare unequal to infinity, despite having a "full" exponent mask.
FpCategory::Infinite
} else if self.is_nan() {
// And it may not be NaN, as it can simply be an "overextended" finite value.
FpCategory::Nan
} else {
// However, std can't simply compare to zero to check for zero, either,
// as correctness requires avoiding equality tests that may be Subnormal == -0.0
// because it may be wrong under "denormals are zero" and "flush to zero" modes.
// Most of std's targets don't use those, but they are used for thumbv7neon.
// So, this does use bitpattern matching for the rest.

// SAFETY: f32 to u32 is fine. Usually.
// If classify has gotten this far, the value is definitely in one of these categories.
unsafe { f32::partial_classify(self) }
}
}

// This doesn't actually return a right answer for NaN on purpose,
// seeing as how it cannot correctly discern between a floating point NaN,
// and some normal floating point numbers truncated from an x87 FPU.
// FIXME(jubilee): This probably could at least answer things correctly for Infinity,
// like the f64 version does, but I need to run more checks on how things go on x86.
// I fear losing mantissa data that would have answered that differently.
//
// # Safety
// This requires making sure you call this function for values it answers correctly on,
// otherwise it returns a wrong answer. This is not important for memory safety per se,
// but getting floats correct is important for not accidentally leaking const eval
// runtime-deviating logic which may or may not be acceptable.
#[rustc_const_unstable(feature = "const_float_classify", issue = "72505")]
const unsafe fn partial_classify(self) -> FpCategory {
const EXP_MASK: u32 = 0x7f800000;
const MAN_MASK: u32 = 0x007fffff;

let bits = self.to_bits();
match (bits & MAN_MASK, bits & EXP_MASK) {
// SAFETY: The caller is not asking questions for which this will tell lies.
let b = unsafe { mem::transmute::<f32, u32>(self) };
match (b & MAN_MASK, b & EXP_MASK) {
(0, 0) => FpCategory::Zero,
(_, 0) => FpCategory::Subnormal,
_ => FpCategory::Normal,
}
}

// This operates on bits, and only bits, so it can ignore concerns about weird FPUs.
// FIXME(jubilee): In a just world, this would be the entire impl for classify,
// plus a transmute. We do not live in a just world, but we can make it more so.
#[rustc_const_unstable(feature = "const_float_classify", issue = "72505")]
const fn classify_bits(b: u32) -> FpCategory {
const EXP_MASK: u32 = 0x7f800000;
const MAN_MASK: u32 = 0x007fffff;

match (b & MAN_MASK, b & EXP_MASK) {
(0, EXP_MASK) => FpCategory::Infinite,
(_, EXP_MASK) => FpCategory::Nan,
(0, 0) => FpCategory::Zero,
(_, 0) => FpCategory::Subnormal,
_ => FpCategory::Normal,
}
}
Expand Down Expand Up @@ -616,7 +681,8 @@ impl f32 {
pub const fn is_sign_negative(self) -> bool {
// IEEE754 says: isSignMinus(x) is true if and only if x has negative sign. isSignMinus
// applies to zeros and NaNs as well.
self.to_bits() & 0x8000_0000 != 0
// SAFETY: This is just transmuting to get the sign bit, it's fine.
unsafe { mem::transmute::<f32, u32>(self) & 0x8000_0000 != 0 }
}

/// Takes the reciprocal (inverse) of a number, `1/x`.
Expand Down Expand Up @@ -831,8 +897,49 @@ impl f32 {
#[rustc_const_unstable(feature = "const_float_bits_conv", issue = "72447")]
#[inline]
pub const fn to_bits(self) -> u32 {
// SAFETY: `u32` is a plain old datatype so we can always transmute to it
unsafe { mem::transmute(self) }
// SAFETY: `u32` is a plain old datatype so we can always transmute to it.
// ...sorta.
//
// It turns out that at runtime, it is possible for a floating point number
// to be subject to a floating point mode that alters nonzero subnormal numbers
// to zero on reads and writes, aka "denormals are zero" and "flush to zero".
// This is not a problem per se, but at least one tier2 platform for Rust
// actually exhibits this behavior by default.
//
// In addition, on x86 targets with SSE or SSE2 disabled and the x87 FPU enabled,
// i.e. not soft-float, the way Rust does parameter passing can actually alter
// a number that is "not infinity" to have the same exponent as infinity,
// in a slightly unpredictable manner.
//
// And, of course evaluating to a NaN value is fairly nondeterministic.
// More precisely: when NaN should be returned is knowable, but which NaN?
// So far that's defined by a combination of LLVM and the CPU, not Rust.
// This function, however, allows observing the bitstring of a NaN,
// thus introspection on CTFE.
//
// In order to preserve, at least for the moment, const-to-runtime equivalence,
// we reject any of these possible situations from happening.
#[rustc_const_unstable(feature = "const_float_bits_conv", issue = "72447")]
const fn ct_f32_to_u32(ct: f32) -> u32 {
match ct.classify() {
FpCategory::Nan => {
panic!("const-eval error: cannot use f32::to_bits on a NaN")
}
FpCategory::Subnormal => {
panic!("const-eval error: cannot use f32::to_bits on a subnormal number")
}
FpCategory::Infinite | FpCategory::Normal | FpCategory::Zero => {
// SAFETY: We have a normal floating point number. Now we transmute, i.e. do a bitcopy.
unsafe { mem::transmute::<f32, u32>(ct) }
}
}
}
// SAFETY: `u32` is a plain old datatype so we can always... uh...
// ...look, just pretend you forgot what you just read.
// Stability concerns.
let rt_f32_to_u32 = |rt| unsafe { mem::transmute::<f32, u32>(rt) };
// SAFETY: We use internal implementations that either always work or fail at compile time.
unsafe { intrinsics::const_eval_select((self,), ct_f32_to_u32, rt_f32_to_u32) }
}

/// Raw transmutation from `u32`.
Expand Down Expand Up @@ -876,9 +983,51 @@ impl f32 {
#[must_use]
#[inline]
pub const fn from_bits(v: u32) -> Self {
// SAFETY: `u32` is a plain old datatype so we can always transmute from it
// It turns out the safety issues with sNaN were overblown! Hooray!
unsafe { mem::transmute(v) }
// SAFETY: `u32` is a plain old datatype so we can always transmute from it
// ...sorta.
//
// It turns out that at runtime, it is possible for a floating point number
// to be subject to floating point modes that alter nonzero subnormal numbers
// to zero on reads and writes, aka "denormals are zero" and "flush to zero".
// This is not a problem usually, but at least one tier2 platform for Rust
// actually exhibits this behavior by default: thumbv7neon
// aka "the Neon FPU in AArch32 state"
//
// In addition, on x86 targets with SSE or SSE2 disabled and the x87 FPU enabled,
// i.e. not soft-float, the way Rust does parameter passing can actually alter
// a number that is "not infinity" to have the same exponent as infinity,
// in a slightly unpredictable manner.
//
// And, of course evaluating to a NaN value is fairly nondeterministic.
// More precisely: when NaN should be returned is knowable, but which NaN?
// So far that's defined by a combination of LLVM and the CPU, not Rust.
// This function, however, allows observing the bitstring of a NaN,
// thus introspection on CTFE.
//
// In order to preserve, at least for the moment, const-to-runtime equivalence,
// reject any of these possible situations from happening.
#[rustc_const_unstable(feature = "const_float_bits_conv", issue = "72447")]
const fn ct_u32_to_f32(ct: u32) -> f32 {
match f32::classify_bits(ct) {
FpCategory::Subnormal => {
panic!("const-eval error: cannot use f32::from_bits on a subnormal number")
}
FpCategory::Nan => {
panic!("const-eval error: cannot use f32::from_bits on NaN")
}
FpCategory::Infinite | FpCategory::Normal | FpCategory::Zero => {
// SAFETY: It's not a frumious number
unsafe { mem::transmute::<u32, f32>(ct) }
}
}
}
// SAFETY: `u32` is a plain old datatype so we can always... uh...
// ...look, just pretend you forgot what you just read.
// Stability concerns.
let rt_u32_to_f32 = |rt| unsafe { mem::transmute::<u32, f32>(rt) };
// SAFETY: We use internal implementations that either always work or fail at compile time.
unsafe { intrinsics::const_eval_select((v,), ct_u32_to_f32, rt_u32_to_f32) }
}

/// Return the memory representation of this floating point number as a byte array in
Expand Down
Loading

0 comments on commit 1e9aa8a

Please sign in to comment.