Skip to content

PromptDresser: Improving the Quality and Controllability of Virtual Try-On via Generative Textual Prompt and Prompt-aware Mask

Notifications You must be signed in to change notification settings

rlawjdghek/PromptDresser

Repository files navigation

PromptDresser: Improving the Quality and Controllability of Virtual Try-On via Generative Textual Prompt and Prompt-aware Mask

This repository is the official implementation of PromptDresser

PromptDresser: Improving the Quality and Controllability of Virtual Try-On via Generative Textual Prompt and Prompt-aware Mask
Jeongho Kim, Hoiyeong Jin, Sunghyun Park, Jaegul Choo

[arXiv Paper

teaser 

TODO List

  • [v] Inference code
  • [v] Release model weights
  • [] Training code

Environments

git clone https://github.com/rlawjdghek/PromptDresser
cd PromptDresser

conda create --name PromptDresser python=3.10 -y
conda activate PromptDresser

# install packages
pip install torch==2.1.0 torchvision==0.16.0 torchaudio==2.1.0 --index-url https://download.pytorch.org/whl/cu121
python -m pip install diffusers==0.25.0
python -m pip install accelerate==0.31.0
python -m pip install transformers>=4.25.1
python -m pip install ftfy
python -m pip install Jinja2
python -m pip install datasets
python -m pip install wandb
python -m pip install onnxruntime-gpu==1.19.2
python -m pip install omegaconf
python -m pip install einops
python -m pip install torchmetrics
python -m pip install clean-fid
python -m pip install scikit-image

python -m pip install opencv-python
python -m pip install fvcore
python -m pip install cloudpickle
python -m pip install pycocotools
python -m pip install av
python -m pip install scipy
python -m pip install peft

python -m pip install huggingface-hub==0.24.6

Weights and Data

First, download the sdxl and sdxl inpainting models into the pretrained_models folder using Git LFS.
Human parsing model and our checkpoint on VITONHD should be placed in the checkpoints folder.

You can download the VITON-HD dataset from here, and download text file and two agnostic mask for prompt-aware mask generation from here.
For the inference, the following dataset structure is required:

test_coarse
|-- image
|-- image-densepose
|-- agnostic-mask
|-- cloth
...

test_fine
|-- image
|-- image-densepose
|-- agnostic-mask
|-- cloth
...

test_pairs.txt
test_unpairs.txt
test_gpt4o.json

Inference

#### single gpu
CUDA_VISIBLE_DEVICES=0 python inference.py \
 --config_p "./configs/VITONHD.yaml" \
 --pretrained_unet_path "./checkpoints/VITONHD/model/pytorch_model.bin" \
 --save_name VITONHD

#### multi-gpu
CUDA_VISIBLE_DEVICES=0,1,2,3 accelerate launch --mixed_precision fp16 --num_processes 4 --multi_gpu inference.py \
 --config_p "./configs/VITONHD.yaml" \
 --pretrained_unet_path "./checkpoints/VITONHD/model/pytorch_model.bin" \
 --save_name VITONHD

Citation

If you find our work useful for your research, please cite us:

@misc{kim2024promptdresserimprovingqualitycontrollability,
      title={PromptDresser: Improving the Quality and Controllability of Virtual Try-On via Generative Textual Prompt and Prompt-aware Mask}, 
      author={Jeongho Kim and Hoiyeong Jin and Sunghyun Park and Jaegul Choo},
      year={2024},
      eprint={2412.16978},
      archivePrefix={arXiv},
      primaryClass={cs.CV},
      url={https://arxiv.org/abs/2412.16978}, 
}

License

Licensed under the CC BY-NC-SA 4.0 license (https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode).

About

PromptDresser: Improving the Quality and Controllability of Virtual Try-On via Generative Textual Prompt and Prompt-aware Mask

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published