Skip to content

v0.3.1 - Initial Release

Compare
Choose a tag to compare
@awtkns awtkns released this 11 Nov 19:52
· 231 commits to main since this release

Tarsier Monkey

🙈 Vision utilities for web interaction agents 🙈

Python

🔗 Main site   •   🐦 Twitter   •   📢 Discord

Announcing Tarsier

If you've tried using GPT-4(V) to automate web interactions, you've probably run into questions like:

  • How do you map LLM responses back into web elements?
  • How can you mark up a page for an LLM better understand its action space?
  • How do you feed a "screenshot" to a text-only LLM?

At Reworkd, we found ourselves reusing the same utility libraries to solve these problems across multiple projects.
Because of this we're now open-sourcing this simple utility library for multimodal web agents... Tarsier!
The video below demonstrates Tarsier usage by feeding a page snapshot into a langchain agent and letting it take actions.

tarsier.mp4

How does it work?

Tarsier works by visually "tagging" interactable elements on a page via brackets + an id such as [1].
In doing this, we provide a mapping between elements and ids for GPT-4(V) to take actions upon.
We define interactable elements as buttons, links, or input fields that are visible on the page.

Can provide a textual representation of the page. This means that Tarsier enables deeper interaction for even non multi-modal LLMs.
This is important to note given performance issues with existing vision language models.
Tarsier also provides OCR utils to convert a page screenshot into a whitespace-structured string that an LLM without vision can understand.

Usage

Visit our cookbook for agent examples using Tarsier:

Otherwise, basic Tarsier usage might look like the following:

import asyncio

from playwright.async_api import async_playwright
from tarsier import Tarsier, GoogleVisionOCRService

async def main():
    google_cloud_credentials = {}

    ocr_service = GoogleVisionOCRService(google_cloud_credentials)
    tarsier = Tarsier(ocr_service)

    async with async_playwright() as p:
        browser = await p.chromium.launch(headless=False)
        page = await browser.new_page()
        await page.goto("https://news.ycombinator.com")

        page_text, tag_to_xpath = await tarsier.page_to_text(page)

        print(tag_to_xpath)  # Mapping of tags to x_paths
        print(page_text)  # My Text representation of the page


if __name__ == '__main__':
    asyncio.run(main())

Supported OCR Services

Special shoutout to @KhoomeiK for making this happen! ❤️