-
Notifications
You must be signed in to change notification settings - Fork 42
/
eval_pcpnet.py
254 lines (209 loc) · 12.3 KB
/
eval_pcpnet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
from __future__ import print_function
import argparse
import os
import sys
import random
import numpy as np
import torch
import torch.nn.parallel
import torch.utils.data
from dataset import PointcloudPatchDataset, SequentialPointcloudPatchSampler, SequentialShapeRandomPointcloudPatchSampler
from pcpnet import PCPNet, MSPCPNet
def parse_arguments():
parser = argparse.ArgumentParser()
# naming / file handling
parser.add_argument('--indir', type=str, default='./pclouds', help='input folder (point clouds)')
parser.add_argument('--outdir', type=str, default='./results', help='output folder (estimated point cloud properties)')
parser.add_argument('--dataset', type=str, default='testset_no_noise.txt', help='shape set file name')
parser.add_argument('--modeldir', type=str, default='./models', help='model folder')
parser.add_argument('--models', type=str, default='single_scale_normal', help='names of trained models, can evaluate multiple models')
parser.add_argument('--modelpostfix', type=str, default='_model.pth', help='model file postfix')
parser.add_argument('--parmpostfix', type=str, default='_params.pth', help='parameter file postfix')
parser.add_argument('--gpu_idx', type=int, default=0, help='set < 0 to use CPU')
parser.add_argument('--sparse_patches', type=int, default=False, help='evaluate on a sparse set of patches, given by a .pidx file containing the patch center point indices.')
parser.add_argument('--sampling', type=str, default='full', help='sampling strategy, any of:\n'
'full: evaluate all points in the dataset\n'
'sequential_shapes_random_patches: pick n random points from each shape as patch centers, shape order is not randomized')
parser.add_argument('--patches_per_shape', type=int, default=1000, help='number of patches evaluated in each shape (only for sequential_shapes_random_patches)')
parser.add_argument('--seed', type=int, default=40938661, help='manual seed')
parser.add_argument('--batchSize', type=int, default=0, help='batch size, if 0 the training batch size is used')
parser.add_argument('--workers', type=int, default=1, help='number of data loading workers - 0 means same thread as main execution')
parser.add_argument('--cache_capacity', type=int, default=100, help='Max. number of dataset elements (usually shapes) to hold in the cache at the same time.')
return parser.parse_args()
def eval_pcpnet(opt):
opt.models = opt.models.split()
if opt.seed < 0:
opt.seed = random.randint(1, 10000)
device = torch.device("cpu" if opt.gpu_idx < 0 else "cuda:%d" % opt.gpu_idx)
for model_name in opt.models:
print("Random Seed: %d" % (opt.seed))
random.seed(opt.seed)
torch.manual_seed(opt.seed)
model_filename = os.path.join(opt.modeldir, model_name+opt.modelpostfix)
param_filename = os.path.join(opt.modeldir, model_name+opt.parmpostfix)
# load model and training parameters
trainopt = torch.load(param_filename)
if opt.batchSize == 0:
model_batchSize = trainopt.batchSize
else:
model_batchSize = opt.batchSize
# get indices in targets and predictions corresponding to each output
pred_dim = 0
output_pred_ind = []
for o in trainopt.outputs:
if o == 'unoriented_normals' or o == 'oriented_normals':
output_pred_ind.append(pred_dim)
pred_dim += 3
elif o == 'max_curvature' or o == 'min_curvature':
output_pred_ind.append(pred_dim)
pred_dim += 1
else:
raise ValueError('Unknown output: %s' % (o))
dataset = PointcloudPatchDataset(
root=opt.indir, shape_list_filename=opt.dataset,
patch_radius=trainopt.patch_radius,
points_per_patch=trainopt.points_per_patch,
patch_features=[],
seed=opt.seed,
use_pca=trainopt.use_pca,
center=trainopt.patch_center,
point_tuple=trainopt.point_tuple,
sparse_patches=opt.sparse_patches,
cache_capacity=opt.cache_capacity)
if opt.sampling == 'full':
datasampler = SequentialPointcloudPatchSampler(dataset)
elif opt.sampling == 'sequential_shapes_random_patches':
datasampler = SequentialShapeRandomPointcloudPatchSampler(
dataset,
patches_per_shape=opt.patches_per_shape,
seed=opt.seed,
sequential_shapes=True,
identical_epochs=False)
else:
raise ValueError('Unknown sampling strategy: %s' % opt.sampling)
dataloader = torch.utils.data.DataLoader(
dataset,
sampler=datasampler,
batch_size=model_batchSize,
num_workers=int(opt.workers))
if len(trainopt.patch_radius) == 1:
regressor = PCPNet(
num_points=trainopt.points_per_patch,
output_dim=pred_dim,
use_point_stn=trainopt.use_point_stn,
use_feat_stn=trainopt.use_feat_stn,
sym_op=trainopt.sym_op,
point_tuple=trainopt.point_tuple)
else:
regressor = MSPCPNet(
num_scales=len(trainopt.patch_radius),
num_points=trainopt.points_per_patch,
output_dim=pred_dim,
use_point_stn=trainopt.use_point_stn,
use_feat_stn=trainopt.use_feat_stn,
sym_op=trainopt.sym_op,
point_tuple=trainopt.point_tuple)
regressor.load_state_dict(torch.load(model_filename))
regressor.to(device)
regressor.eval()
shape_ind = 0
shape_patch_offset = 0
if opt.sampling == 'full':
shape_patch_count = dataset.shape_patch_count[shape_ind]
elif opt.sampling == 'sequential_shapes_random_patches':
shape_patch_count = min(opt.patches_per_shape, dataset.shape_patch_count[shape_ind])
else:
raise ValueError('Unknown sampling strategy: %s' % opt.sampling)
shape_properties = torch.zeros(shape_patch_count, pred_dim, dtype=torch.float, device=device)
# append model name to output directory and create directory if necessary
model_outdir = os.path.join(opt.outdir, model_name)
if not os.path.exists(model_outdir):
os.makedirs(model_outdir)
num_batch = len(dataloader)
batch_enum = enumerate(dataloader, 0)
for batchind, data in batch_enum:
# get batch and upload to GPU
points, data_trans = data
points = points.transpose(2, 1)
points = points.to(device)
data_trans = data_trans.to(device)
with torch.no_grad():
pred, trans, _, _ = regressor(points)
# post-processing of the prediction
for oi, o in enumerate(trainopt.outputs):
if o == 'unoriented_normals' or o == 'oriented_normals':
o_pred = pred[:, output_pred_ind[oi]:output_pred_ind[oi]+3]
if trainopt.use_point_stn:
# transform predictions with inverse transform
# since we know the transform to be a rotation (QSTN), the transpose is the inverse
o_pred[:, :] = torch.bmm(o_pred.unsqueeze(1), trans.transpose(2, 1)).squeeze(dim=1)
if trainopt.use_pca:
# transform predictions with inverse pca rotation (back to world space)
o_pred[:, :] = torch.bmm(o_pred.unsqueeze(1), data_trans.transpose(2, 1)).squeeze(dim=1)
# normalize normals
o_pred_len = torch.max(o_pred.new_tensor([sys.float_info.epsilon*100]), o_pred.norm(p=2, dim=1, keepdim=True))
o_pred = o_pred / o_pred_len
elif o == 'max_curvature' or o == 'min_curvature':
o_pred = pred[:, output_pred_ind[oi]:output_pred_ind[oi]+1]
# undo patch size normalization:
o_pred[:, :] = o_pred / dataset.patch_radius_absolute[shape_ind][0]
else:
raise ValueError('Unsupported output type: %s' % (o))
print('[%s %d/%d] shape %s' % (model_name, batchind, num_batch-1, dataset.shape_names[shape_ind]))
batch_offset = 0
while batch_offset < pred.size(0):
shape_patches_remaining = shape_patch_count-shape_patch_offset
batch_patches_remaining = pred.size(0)-batch_offset
# append estimated patch properties batch to properties for the current shape
shape_properties[shape_patch_offset:shape_patch_offset+min(shape_patches_remaining, batch_patches_remaining), :] = pred[
batch_offset:batch_offset+min(shape_patches_remaining, batch_patches_remaining), :]
batch_offset = batch_offset + min(shape_patches_remaining, batch_patches_remaining)
shape_patch_offset = shape_patch_offset + min(shape_patches_remaining, batch_patches_remaining)
if shape_patches_remaining <= batch_patches_remaining:
# save shape properties to disk
prop_saved = [False]*len(trainopt.outputs)
# save normals
oi = [i for i, o in enumerate(trainopt.outputs) if o in ['unoriented_normals', 'oriented_normals']]
if len(oi) > 1:
raise ValueError('Duplicate normal output.')
elif len(oi) == 1:
oi = oi[0]
normal_prop = shape_properties[:, output_pred_ind[oi]:output_pred_ind[oi]+3]
np.savetxt(os.path.join(model_outdir, dataset.shape_names[shape_ind]+'.normals'), normal_prop.cpu().numpy())
prop_saved[oi] = True
# save curvatures
oi1 = [i for i, o in enumerate(trainopt.outputs) if o == 'max_curvature']
oi2 = [i for i, o in enumerate(trainopt.outputs) if o == 'min_curvature']
if len(oi1) > 1 or len(oi2) > 1:
raise ValueError('Duplicate minimum or maximum curvature output.')
elif len(oi1) == 1 or len(oi2) == 1:
curv_prop = shape_properties.new_zeros(shape_properties.size(0), 2)
if len(oi1) == 1:
oi1 = oi1[0]
curv_prop[:, 0] = shape_properties[:, output_pred_ind[oi1]]
prop_saved[oi1] = True
if len(oi2) == 1:
oi2 = oi2[0]
curv_prop[:, 1] = shape_properties[:, output_pred_ind[oi2]]
prop_saved[oi2] = True
np.savetxt(os.path.join(model_outdir, dataset.shape_names[shape_ind]+'.curv'), curv_prop.cpu().numpy())
if not all(prop_saved):
raise ValueError('Not all shape properties were saved, some of them seem to be unsupported.')
# save point indices
if opt.sampling != 'full':
np.savetxt(os.path.join(model_outdir, dataset.shape_names[shape_ind]+'.idx'), datasampler.shape_patch_inds[shape_ind], fmt='%d')
# start new shape
if shape_ind + 1 < len(dataset.shape_names):
shape_patch_offset = 0
shape_ind = shape_ind + 1
if opt.sampling == 'full':
shape_patch_count = dataset.shape_patch_count[shape_ind]
elif opt.sampling == 'sequential_shapes_random_patches':
# shape_patch_count = min(opt.patches_per_shape, dataset.shape_patch_count[shape_ind])
shape_patch_count = len(datasampler.shape_patch_inds[shape_ind])
else:
raise ValueError('Unknown sampling strategy: %s' % opt.sampling)
shape_properties = shape_properties.new_zeros(shape_patch_count, pred_dim)
if __name__ == '__main__':
eval_opt = parse_arguments()
eval_pcpnet(eval_opt)