-
-
Notifications
You must be signed in to change notification settings - Fork 18.1k
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
DOC: Fixing flake8 errors in cookbook.rst #23837
Changes from 3 commits
d467a5c
c3c26ea
27b3245
01d9826
2df61db
cd94d8d
085ac5f
ce05dba
acfb29d
8cde4a7
8895fde
d57be90
File filter
Filter by extension
Conversations
Jump to
Diff view
Diff view
There are no files selected for viewing
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -234,20 +234,22 @@ There are 2 explicit slicing methods, with a third general case | |
.. ipython:: python | ||
df.iloc[0:3] # Positional | ||
|
||
df.loc['bar': 'kar'] # Label | ||
df.loc['bar':'kar'] # Label | ||
|
||
# Generic | ||
df.iloc[0:3] | ||
df.loc['bar': 'kar'] | ||
df.loc['bar':'kar'] | ||
|
||
Ambiguity arises when an index consists of integers with a non-zero start or non-unit increment. | ||
|
||
.. ipython:: python | ||
:verbatim: | ||
|
||
data = {'AAA': [4, 5, 6, 7], | ||
'BBB': [10, 20, 30, 40], | ||
'CCC': [100, 50, -30, -50]} | ||
df2 = pd.DataFrame(data=data, index=[1, 2, 3, 4]) # Note index starts at 1. | ||
|
||
df2.iloc[1:3] # Position-oriented | ||
|
||
df2.loc[1:3] # Label-oriented | ||
|
||
`Using inverse operator (~) to take the complement of a mask | ||
|
@@ -537,13 +539,13 @@ Unlike agg, apply's callable is passed a sub-DataFrame which gives you access to | |
|
||
S = pd.Series([i / 100.0 for i in range(1, 11)]) | ||
|
||
def cumRet(x, y): | ||
def cum_ret(x, y): | ||
return x * (1 + y) | ||
|
||
def red(x): | ||
return functools.reduce(CumRet, x, 1.0) | ||
return functools.reduce(cum_ret, x, 1.0) | ||
|
||
S.expanding().apply(Red, raw=True) | ||
S.expanding().apply(red, raw=True) | ||
|
||
|
||
`Replacing some values with mean of the rest of a group | ||
|
@@ -747,8 +749,8 @@ Apply | |
def SeriesFromSubList(aList): | ||
return pd.Series(aList) | ||
|
||
df_orgz = pd.concat(dict([(ind, row.apply(SeriesFromSubList)) | ||
for ind, row in df.iterrows()])) | ||
df_orgz = pd.concat({ind: row.apply(SeriesFromSubList) | ||
for ind, row in df.iterrows()}) | ||
df_orgz | ||
|
||
`Rolling Apply with a DataFrame returning a Series | ||
|
@@ -765,11 +767,11 @@ Rolling Apply to multiple columns where function calculates a Series before a Sc | |
|
||
def gm(df, const): | ||
v = ((((df.A + df.B) + 1).cumprod()) - 1) * const | ||
return (df.index[0], v.iloc[-1]) | ||
return (v.iloc[-1]) | ||
|
||
S = pd.Series(dict([gm(df.iloc[i:min(i + 51, len(df) - 1)], 5) | ||
for i in range(len(df) - 50)])) | ||
S | ||
s = pd.Series({df.index[i]: gm(df.iloc[i:min(i + 51, len(df) - 1)], 5) | ||
for i in range(len(df) - 50)}) | ||
s | ||
|
||
`Rolling apply with a DataFrame returning a Scalar | ||
<http://stackoverflow.com/questions/21040766/python-pandas-rolling-apply-two-column-input-into-function/21045831#21045831>`__ | ||
|
@@ -1034,7 +1036,7 @@ You can use the same approach to read all files matching a pattern. Here is an | |
Finally, this strategy will work with the other ``pd.read_*(...)`` functions described in the :ref:`io docs<io>`. | ||
|
||
.. ipython:: python | ||
:suppress: | ||
:verbatim: | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. What does There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. :verbatim: prevents execution as well. In this case I think I have made a mistake. The decorator should remain suppress. |
||
|
||
for i in range(3): | ||
os.remove('file_{}.csv'.format(i)) | ||
|
@@ -1045,16 +1047,14 @@ Parsing date components in multi-columns | |
Parsing date components in multi-columns is faster with a format | ||
|
||
.. ipython:: python | ||
:suppress: | ||
:verbatim: | ||
|
||
i = pd.date_range('20000101', periods=10000) | ||
df = pd.DataFrame({'year': i.year, 'month': i.month, 'day': i.day}) | ||
df.head() | ||
%timeit pd.to_datetime(df.year * 10000 + df.month * 100 + df.day, | ||
format='%Y%m%d') | ||
%timeit pd.to_datetime(df.year * 10000 + df.month * 100 + df.day, format='%Y%m%d') | ||
ds = df.apply(lambda x: "%04d%02d%02d" % (x['year'], | ||
x['month'], x['day']), axis=1) | ||
|
||
ds.head() | ||
%timeit pd.to_datetime(ds) | ||
|
||
|
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.