Simple vector quantization utilities and functions.
cargo add vector_quantizer
Example usage:
use anyhow::Result;
use ndarray::Array2;
use ndarray_rand::RandomExt;
use vector_quantizer::pq::PQ;
use rand_distr::StandardNormal;
fn main() -> Result<()> {
// Generate sample vectors to quantize
let num_vectors = 1000;
let dimension = 128;
let original_vectors = Array2::random((num_vectors, dimension), StandardNormal);
// Configure PQ parameters
let m = 8; // Number of subspaces (controls compression ratio)
let ks = 256; // Number of centroids per subspace (usually 256 for uint8)
let mut pq = PQ::try_new(m, ks)?;
// Train the quantizer on the data
println!("Training PQ model...");
pq.fit(&original_vectors, 20)?;
// Quantize the vectors
println!("Quantizing vectors...");
let quantized_vectors = pq.compress(&original_vectors)?;
// Print some statistics about the quantization
let compression_ratio = calc_compression_ratio(m, ks, dimension);
let mse = calc_mse(&original_vectors, &quantized_vectors);
println!("\nQuantization Results:");
println!("Original vector size: {} bytes", dimension * 4); // 4 bytes per f32
println!("Quantized vector size: {} bytes", m); // 1 byte per subspace with ks=256
println!("Compression ratio: {:.2}x", compression_ratio);
println!("Mean Squared Error: {:.6}", mse);
// Example of how to get the compact codes for storage
let compact_codes = pq.encode(&original_vectors)?;
println!("\nCompact codes shape: {:?}", compact_codes.dim());
// Demonstrate reconstructing vectors from compact codes
let reconstructed = pq.decode(&compact_codes)?;
assert_eq!(reconstructed.dim(), original_vectors.dim());
Ok(())
}
// Helper function to calculate compression ratio
fn calc_compression_ratio(m: usize, ks: u32, dimension: usize) -> f64 {
let original_size = dimension * 4; // 4 bytes per f32
let quantized_size = m; // 1 byte per subspace when ks=256
original_size as f64 / quantized_size as f64
}
// Helper function to calculate Mean Squared Error
fn calc_mse(original: &Array2<f32>, quantized: &Array2<f32>) -> f32 {
(&(original - quantized))
.mapv(|x| x.powi(2))
.mean()
.unwrap()
}
See a more detailed example here: /src/bin/example.rs
The PQ implementation was tested on datasets ranging from 1,000 to 1,000,000 vectors (128 dimensions each), using 16 subspaces and 256 centroids per subspace. Key findings:
- Memory Efficiency: Consistently achieves 96.88% memory reduction across all dataset sizes
- Processing Speed:
- Fitting: Scales linearly, processing 100k vectors in ~3.7s (1M vectors in ~38s)
- Compression: Very efficient, handling ~278k vectors per second (1M vectors in 3.57s)
- Quality Metrics:
- Reconstruction Error: Remains low (0.013-0.021) across all dataset sizes
- Recall@10: Ranges from 0.40 (small datasets) to 0.18 (large datasets)
The benchmark was tested on a 2022 MacBook Pro, M2 Pro, 16GB RAM. Run your own tests by running:
make quality_check
The code in this repository is mostly adapted from https://github.com/xinyandai/product-quantization, a great Python lib for vector quantization.
The original code and the one written in this repository is derived from "Norm-Explicit Quantization: Improving Vector Quantization for Maximum Inner Product Search" by Dai, Xinyan and Yan, Xiao and Ng, Kelvin KW and Liu, Jie and Cheng, James: https://arxiv.org/abs/1911.04654