Skip to content

Commit

Permalink
[Project] Medical semantic seg dataset: chest_image_pneum (#2727)
Browse files Browse the repository at this point in the history
  • Loading branch information
tianbinli authored Jun 20, 2023
1 parent 041f1f0 commit 65c8d77
Show file tree
Hide file tree
Showing 7 changed files with 343 additions and 0 deletions.
147 changes: 147 additions & 0 deletions projects/medical/2d_image/x_ray/chest_image_pneum/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,147 @@
# Chest Image Dataset for Pneumothorax Segmentation

## Description

This project supports **`Chest Image Dataset for Pneumothorax Segmentation`**, which can be downloaded from [here](https://tianchi.aliyun.com/dataset/83075).

### Dataset Overview

Pneumothorax can be caused by a blunt chest injury, damage from underlying lung disease, or most horrifying—it may occur for no obvious reason at all. On some occasions, a collapsed lung can be a life-threatening event.
Pneumothorax is usually diagnosed by a radiologist on a chest x-ray, and can sometimes be very difficult to confirm. An accurate AI algorithm to detect pneumothorax would be useful in a lot of clinical scenarios. AI could be used to triage chest radiographs for priority interpretation, or to provide a more confident diagnosis for non-radiologists.

The dataset is provided by the Society for Imaging Informatics in Medicine(SIIM), American College of Radiology (ACR),Society of Thoracic Radiology (STR) and MD.ai. You can develop a model to classify (and if present, segment) pneumothorax from a set of chest radiographic images. If successful, you could aid in the early recognition of pneumothoraces and save lives.

### Original Statistic Information

| Dataset name | Anatomical region | Task type | Modality | Num. Classes | Train/Val/Test Images | Train/Val/Test Labeled | Release Date | License |
| --------------------------------------------------------------------- | ----------------- | ------------ | -------- | ------------ | --------------------- | ---------------------- | ------------ | ------------------------------------------------------------------ |
| [pneumothorax segmentation](https://tianchi.aliyun.com/dataset/83075) | thorax | segmentation | x_ray | 2 | 12089/-/3205 | yes/-/no | - | [CC-BY-SA-NC 4.0](https://creativecommons.org/licenses/by-sa/4.0/) |

| Class Name | Num. Train | Pct. Train | Num. Val | Pct. Val | Num. Test | Pct. Test |
| :---------------: | :--------: | :--------: | :------: | :------: | :-------: | :-------: |
| normal | 12089 | 99.75 | - | - | - | - |
| pneumothorax area | 2669 | 0.25 | - | - | - | - |

Note:

- `Pct` means percentage of pixels in this category in all pixels.

### Visualization

![bac](https://raw.githubusercontent.com/uni-medical/medical-datasets-visualization/main/2d/semantic_seg/x_ray/chest_image_pneum/chest_image_pneum_dataset.png)

### Prerequisites

- Python v3.8
- PyTorch v1.10.0
- [MIM](https://github.com/open-mmlab/mim) v0.3.4
- [MMCV](https://github.com/open-mmlab/mmcv) v2.0.0rc4
- [MMEngine](https://github.com/open-mmlab/mmengine) v0.2.0 or higher
- [MMSegmentation](https://github.com/open-mmlab/mmsegmentation) v1.0.0rc5

All the commands below rely on the correct configuration of `PYTHONPATH`, which should point to the project's directory so that Python can locate the module files. In `chest_image_pneum/` root directory, run the following line to add the current directory to `PYTHONPATH`:

```shell
export PYTHONPATH=`pwd`:$PYTHONPATH
```

### Dataset preparing

- download dataset from [here](https://tianchi.aliyun.com/dataset/83075) and decompress data to path `'data/'`.
- run script `"python tools/prepare_dataset.py"` to format data and change folder structure as below.
- run script `"python ../../tools/split_seg_dataset.py"` to split dataset and generate `train.txt`, `val.txt` and `test.txt`. If the label of official validation set and test set can't be obtained, we generate `train.txt` and `val.txt` from the training set randomly.

```none
mmsegmentation
├── mmseg
├── projects
│ ├── medical
│ │ ├── 2d_image
│ │ │ ├── x_ray
│ │ │ │ ├── chest_image_pneum
│ │ │ │ │ ├── configs
│ │ │ │ │ ├── datasets
│ │ │ │ │ ├── tools
│ │ │ │ │ ├── data
│ │ │ │ │ │ ├── train.txt
│ │ │ │ │ │ ├── test.txt
│ │ │ │ │ │ ├── images
│ │ │ │ │ │ │ ├── train
│ │ │ │ | │ │ │ ├── xxx.png
│ │ │ │ | │ │ │ ├── ...
│ │ │ │ | │ │ │ └── xxx.png
│ │ │ │ │ │ ├── masks
│ │ │ │ │ │ │ ├── train
│ │ │ │ | │ │ │ ├── xxx.png
│ │ │ │ | │ │ │ ├── ...
│ │ │ │ | │ │ │ └── xxx.png
```

### Divided Dataset Information

***Note: The table information below is divided by ourselves.***

| Class Name | Num. Train | Pct. Train | Num. Val | Pct. Val | Num. Test | Pct. Test |
| :---------------: | :--------: | :--------: | :------: | :------: | :-------: | :-------: |
| normal | 9637 | 99.75 | 2410 | 99.74 | - | - |
| pneumothorax area | 2137 | 0.25 | 532 | 0.26 | - | - |

### Training commands

Train models on a single server with one GPU.

```shell
mim train mmseg ./configs/${CONFIG_FILE}
```

### Testing commands

Test models on a single server with one GPU.

```shell
mim test mmseg ./configs/${CONFIG_FILE} --checkpoint ${CHECKPOINT_PATH}
```

<!-- List the results as usually done in other model's README. [Example](https://github.com/open-mmlab/mmsegmentation/tree/dev-1.x/configs/fcn#results-and-models)
You should claim whether this is based on the pre-trained weights, which are converted from the official release; or it's a reproduced result obtained from retraining the model in this project. -->

## Results

### Bactteria detection with darkfield microscopy

| Method | Backbone | Crop Size | lr | mIoU | mDice | config | download |
| :-------------: | :------: | :-------: | :----: | :--: | :---: | :------------------------------------------------------------------------------------: | :----------------------: |
| fcn_unet_s5-d16 | unet | 512x512 | 0.01 | - | - | [config](./configs/fcn-unet-s5-d16_unet_1xb16-0.01-20k_chest-image-pneum-512x512.py) | [model](<>) \| [log](<>) |
| fcn_unet_s5-d16 | unet | 512x512 | 0.001 | - | - | [config](./configs/fcn-unet-s5-d16_unet_1xb16-0.001-20k_chest-image-pneum-512x512.py) | [model](<>) \| [log](<>) |
| fcn_unet_s5-d16 | unet | 512x512 | 0.0001 | - | - | [config](./configs/fcn-unet-s5-d16_unet_1xb16-0.0001-20k_chest-image-pneum-512x512.py) | [model](<>) \| [log](<>) |

## Checklist

- [x] Milestone 1: PR-ready, and acceptable to be one of the `projects/`.

- [x] Finish the code

- [x] Basic docstrings & proper citation

- [x] Test-time correctness

- [x] A full README

- [x] Milestone 2: Indicates a successful model implementation.

- [x] Training-time correctness

- [ ] Milestone 3: Good to be a part of our core package!

- [ ] Type hints and docstrings

- [ ] Unit tests

- [ ] Code polishing

- [ ] Metafile.yml

- [ ] Move your modules into the core package following the codebase's file hierarchy structure.

- [ ] Refactor your modules into the core package following the codebase's file hierarchy structure.
Original file line number Diff line number Diff line change
@@ -0,0 +1,42 @@
dataset_type = 'ChestImagePneumDataset'
data_root = 'data/'
img_scale = (512, 512)
train_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='LoadAnnotations'),
dict(type='Resize', scale=img_scale, keep_ratio=False),
dict(type='RandomFlip', prob=0.5),
dict(type='PhotoMetricDistortion'),
dict(type='PackSegInputs')
]
test_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='Resize', scale=img_scale, keep_ratio=False),
dict(type='LoadAnnotations'),
dict(type='PackSegInputs')
]
train_dataloader = dict(
batch_size=16,
num_workers=4,
persistent_workers=True,
sampler=dict(type='InfiniteSampler', shuffle=True),
dataset=dict(
type=dataset_type,
data_root=data_root,
ann_file='train.txt',
data_prefix=dict(img_path='images/', seg_map_path='masks/'),
pipeline=train_pipeline))
val_dataloader = dict(
batch_size=1,
num_workers=4,
persistent_workers=True,
sampler=dict(type='DefaultSampler', shuffle=False),
dataset=dict(
type=dataset_type,
data_root=data_root,
ann_file='val.txt',
data_prefix=dict(img_path='images/', seg_map_path='masks/'),
pipeline=test_pipeline))
test_dataloader = val_dataloader
val_evaluator = dict(type='IoUMetric', iou_metrics=['mIoU', 'mDice'])
test_evaluator = dict(type='IoUMetric', iou_metrics=['mIoU', 'mDice'])
Original file line number Diff line number Diff line change
@@ -0,0 +1,18 @@
_base_ = [
'./chest-image-pneum_512x512.py',
'mmseg::_base_/models/fcn_unet_s5-d16.py',
'mmseg::_base_/default_runtime.py',
'mmseg::_base_/schedules/schedule_20k.py'
]
custom_imports = dict(imports='datasets.chest-image-pneum_dataset')
img_scale = (512, 512)
data_preprocessor = dict(size=img_scale)
optimizer = dict(lr=0.0001)
optim_wrapper = dict(optimizer=optimizer)
model = dict(
data_preprocessor=data_preprocessor,
decode_head=dict(num_classes=2),
auxiliary_head=None,
test_cfg=dict(mode='whole', _delete_=True))
vis_backends = None
visualizer = dict(vis_backends=vis_backends)
Original file line number Diff line number Diff line change
@@ -0,0 +1,18 @@
_base_ = [
'./chest-image-pneum_512x512.py',
'mmseg::_base_/models/fcn_unet_s5-d16.py',
'mmseg::_base_/default_runtime.py',
'mmseg::_base_/schedules/schedule_20k.py'
]
custom_imports = dict(imports='datasets.chest-image-pneum_dataset')
img_scale = (512, 512)
data_preprocessor = dict(size=img_scale)
optimizer = dict(lr=0.001)
optim_wrapper = dict(optimizer=optimizer)
model = dict(
data_preprocessor=data_preprocessor,
decode_head=dict(num_classes=2),
auxiliary_head=None,
test_cfg=dict(mode='whole', _delete_=True))
vis_backends = None
visualizer = dict(vis_backends=vis_backends)
Original file line number Diff line number Diff line change
@@ -0,0 +1,18 @@
_base_ = [
'./chest-image-pneum_512x512.py',
'mmseg::_base_/models/fcn_unet_s5-d16.py',
'mmseg::_base_/default_runtime.py',
'mmseg::_base_/schedules/schedule_20k.py'
]
custom_imports = dict(imports='datasets.chest-image-pneum_dataset')
img_scale = (512, 512)
data_preprocessor = dict(size=img_scale)
optimizer = dict(lr=0.01)
optim_wrapper = dict(optimizer=optimizer)
model = dict(
data_preprocessor=data_preprocessor,
decode_head=dict(num_classes=2),
auxiliary_head=None,
test_cfg=dict(mode='whole', _delete_=True))
vis_backends = None
visualizer = dict(vis_backends=vis_backends)
Original file line number Diff line number Diff line change
@@ -0,0 +1,27 @@
from mmseg.datasets import BaseSegDataset
from mmseg.registry import DATASETS


@DATASETS.register_module()
class ChestImagePneumDataset(BaseSegDataset):
"""ChestImagePneumDataset dataset.
In segmentation map annotation for ChestImagePneumDataset,
``reduce_zero_label`` is fixed to False. The ``img_suffix``
is fixed to '.png' and ``seg_map_suffix`` is fixed to '.png'.
Args:
img_suffix (str): Suffix of images. Default: '.png'
seg_map_suffix (str): Suffix of segmentation maps. Default: '.png'
"""
METAINFO = dict(classes=('normal', 'pneumothorax area'))

def __init__(self,
img_suffix='.png',
seg_map_suffix='.png',
**kwargs) -> None:
super().__init__(
img_suffix=img_suffix,
seg_map_suffix=seg_map_suffix,
reduce_zero_label=False,
**kwargs)
Original file line number Diff line number Diff line change
@@ -0,0 +1,73 @@
import os

import numpy as np
import pandas as pd
import pydicom
from PIL import Image

root_path = 'data/'
img_suffix = '.dcm'
seg_map_suffix = '.png'
save_img_suffix = '.png'
save_seg_map_suffix = '.png'

x_train = []
for fpath, dirname, fnames in os.walk('data/chestimage_train_datasets'):
for fname in fnames:
if fname.endswith('.dcm'):
x_train.append(os.path.join(fpath, fname))
x_test = []
for fpath, dirname, fnames in os.walk('data/chestimage_test_datasets/'):
for fname in fnames:
if fname.endswith('.dcm'):
x_test.append(os.path.join(fpath, fname))

os.system('mkdir -p ' + root_path + 'images/train/')
os.system('mkdir -p ' + root_path + 'images/test/')
os.system('mkdir -p ' + root_path + 'masks/train/')


def rle_decode(rle, width, height):
mask = np.zeros(width * height, dtype=np.uint8)
array = np.asarray([int(x) for x in rle.split()])
starts = array[0::2]
lengths = array[1::2]

current_position = 0
for index, start in enumerate(starts):
current_position += start
mask[current_position:current_position + lengths[index]] = 1
current_position += lengths[index]

return mask.reshape(width, height, order='F')


part_dir_dict = {0: 'train/', 1: 'test/'}
dict_from_csv = pd.read_csv(
root_path + 'chestimage_train-rle_datasets.csv', sep=',',
index_col=0).to_dict()[' EncodedPixels']

for ith, part in enumerate([x_train, x_test]):
part_dir = part_dir_dict[ith]
for img in part:
basename = os.path.basename(img)
img_id = '.'.join(basename.split('.')[:-1])
if ith == 0 and (img_id not in dict_from_csv.keys()):
continue
image = pydicom.read_file(img).pixel_array
save_img_path = root_path + 'images/' + part_dir + '.'.join(
basename.split('.')[:-1]) + save_img_suffix
print(save_img_path)
img_h, img_w = image.shape[:2]
image = Image.fromarray(image)
image.save(save_img_path)
if ith == 1:
continue
if dict_from_csv[img_id] == '-1':
mask = np.zeros((img_h, img_w), dtype=np.uint8)
else:
mask = rle_decode(dict_from_csv[img_id], img_h, img_w)
save_mask_path = root_path + 'masks/' + part_dir + '.'.join(
basename.split('.')[:-1]) + save_seg_map_suffix
mask = Image.fromarray(mask)
mask.save(save_mask_path)

0 comments on commit 65c8d77

Please sign in to comment.