This document shows how to build and run InternLM 7B / 20B models in TensorRT-LLM on both single GPU, single node multi-GPU and multi-node multi-GPU.
The TensorRT-LLM InternLM implementation can be found in tensorrt_llm/models/internlm/model.py. The TensorRT-LLM InternLM example code is located in examples/internlm
. There is one main file:
- [
convert_checkpoint.py
] to to convert a checkpoint from the HuggingFace (HF) Transformers format to the TensorRT-LLM format
In addition, there are two shared files in the parent folder examples
for inference and evaluation:
../run.py
to run the inference on an input text;../summarize.py
to summarize the articles in the cnn_dailymail dataset.
- FP16 / BF16
- INT8 & INT4 Weight-Only
- Smooth Quant
- INT8 KV Cache
- Tensor Parallel & Pipeline Parallel
The TensorRT-LLM InternLM example code locates at examples/internlm. It takes HF weights as input, and builds the corresponding TensorRT engines. The number of TensorRT engines depends on the number of GPUs used to run inference.
TensorRT-LLM InternLM builds TensorRT engine(s) from HF checkpoint. If no checkpoint directory is specified, TensorRT-LLM will build engine(s) with dummy weights.
InternLM has released several checkpoints of different size or capabilities under https://huggingface.co/internlm. Users can pick any one repository and follow instructions to prepare the checkpoint.
Below examples use internlm-chat-7b and internlm-chat-20b and assume these repositories are cloned or linked under this directory, for example ./internlm-chat-7b/
.
Normally trtllm-build
only requires single GPU, but if you've already got all the GPUs needed while inferencing, you could enable parallel building to make the engine building process faster by adding --workers
argument. Please note that currently --workers
feature only supports single node.
Here're some examples:
# Build a single-GPU float16 engine from HF weights.
# gpt_attention_plugin is necessary in InternLM.
# Try use_gemm_plugin to prevent accuracy issue.
# Convert the InternLM 7B model using a single GPU and FP16.
python convert_checkpoint.py --model_dir ./internlm-chat-7b/ \
--dtype float16 \
--output_dir ./internlm-chat-7b/trt_engines/fp16/1-gpu/
# Note: setting `--dtype bfloat16` to use bfloat16 precision.
# BUild the InternLM 7B model using a single GPU
trtllm-build --checkpoint_dir ./internlm-chat-7b/trt_engines/fp16/1-gpu/ \
--output_dir ./engine_outputs \
--gemm_plugin float16
# Convert the InternLM 7B model using a single GPU and apply INT8 weight-only quantization..
python convert_checkpoint.py --model_dir ./internlm-chat-7b/ \
--dtype float16 \
--output_dir ./internlm-chat-7b/trt_engines/int8/1-gpu/ \
--use_weight_only \
--weight_only_precision int8
trtllm-build --checkpoint_dir ./internlm-chat-7b/trt_engines/int8/1-gpu/ \
--output_dir ./engine_outputs \
--gemm_plugin float16
# Note: setting `--weight_only_precision int4` to use INT4 weight-only quantization
# Build InternLM 7B using 2-way tensor parallelism.
python convert_checkpoint.py --model_dir ./internlm-chat-7b/ \
--dtype float16 \
--output_dir ./internlm-chat-7b/trt_engines/fp16/2-gpu/ \
--tp_size 2
trtllm-build --checkpoint_dir ./internlm-chat-7b/trt_engines/fp16/2-gpu/ \
--output_dir ./engine_outputs \
--gemm_plugin float16
# Build InternLM 20B using 2-way tensor parallelism.
python convert_checkpoint.py --model_dir ./internlm-chat-20b/ \
--dtype bfloat16 \
--output_dir ./internlm-chat-20b/trt_engines/bf16/2-gpu/ \
--tp_size 2 --workers 2
trtllm-build --checkpoint_dir ./internlm-chat-7b/trt_engines/bf16/2-gpu/ \
--output_dir ./engine_outputs \
--gpt_attention_plugin bfloat16 \
--gemm_plugin bfloat16
For INT8 KV cache, convert_checkpoint.py
features a
--int8_kv_cache
option. Setting --int8_kv_cache
will calibrate the model,
and then export the scaling factors needed for INT8 KV cache inference.
Example:
# For 7B models
python convert_checkpoint.py --model_dir ./internlm-chat-7b \
--output_dir ./internlm-chat-7b/smooth_internlm/int8_kv_cache/ \
--dtype float16 \
--use_weight_only \
--weight_only_precision int8 \
--int8_kv_cache
# Build 7B model with both INT8 weight-only and INT8 KV cache enabled
trtllm-build --checkpoint_dir ./internlm-chat-7b/smooth_internlm/int8_kv_cache/ \
--output_dir ./engine_outputs \
--gemm_plugin float16
# For 20B models
python convert_checkpoint.py --model_dir ./internlm-chat-20b \
--output_dir ./internlm-chat-20b/smooth_internlm/int8_kv_cache/ \
--dtype float16 \
--use_weight_only \
--weight_only_precision int8 \
--int8_kv_cache
# Build 20B model with both INT8 weight-only and INT8 KV cache enabled
trtllm-build --checkpoint_dir ./internlm-chat-20b/smooth_internlm/int8_kv_cache/ \
--output_dir ./engine_outputs \
--gemm_plugin float16 \
Test with ../run.py
or ../summarize.py
:
python ../run.py --max_output_len=120 \
--input_text 'Tell me about yourself.' \
--tokenizer_dir ./internlm-chat-7b/ \
--engine_dir ./internlm-chat-7b/trt_engines/int8_kv_cache_weight_only/1-gpu
python ../run.py --max_output_len=120 \
--input_text 'Tell me about yourself.' \
--tokenizer_dir ./internlm-chat-20b/ \
--engine_dir ./internlm-chat-20b/trt_engines/int8_kv_cache_weight_only/1-gpu
python ../summarize.py --test_trt_llm --test_hf \
--hf_model_dir ./internlm-chat-7b \
--data_type fp16 \
--engine_dir ./internlm-chat-7b/trt_engines/int8_kv_cache_weight_only/1-gpu
python ../summarize.py --test_trt_llm --test_hf \
--hf_model_dir ./internlm-chat-20b \
--data_type fp16 \
--engine_dir ./internlm-chat-20b/trt_engines/int8_kv_cache_weight_only/1-gpu
Unlike the FP16 build where the HF weights are processed and loaded into the TensorRT-LLM directly, the SmoothQuant needs to load INT8 weights which should be pre-processed before building an engine.
Example:
# For 7B models
python convert_checkpoint.py --model_dir ./internlm-chat-7b --output_dir ./internlm-chat-7b/smooth_internlm/sq0.5/ --dtype float16 --smoothquant 0.5
# Build the engine
trtllm-build --checkpoint_dir ./internlm-chat-7b/smooth_internlm/sq0.5/ \
--output_dir ./engine_outputs \
--gemm_plugin float16
# For 20B models
python convert_checkpoint.py --model_dir ./internlm-chat-20b --output_dir ./internlm-chat-20b/smooth_internlm/sq0.5/ --dtype float16 --smoothquant 0.5
trtllm-build --checkpoint_dir ./internlm-chat-20b/smooth_internlm/sq0.5/ \
--output_dir ./engine_outputs \
--gemm_plugin float16
convert_checkpoint.py
add new options for the support of INT8 inference of SmoothQuant models.
--smoothquant
is the starting point of INT8 inference. By default, it
will run the model in the per-tensor mode.
Then, you can add any combination of --per-token
and --per-channel
to get the corresponding behaviors.
Examples of build invocations:
# Build model for SmoothQuant in the _per_token_ + _per_channel_ mode
# 7B model
python convert_checkpoint.py --model_dir ./internlm-chat-7b --output_dir ./internlm-chat-7b/smooth_internlm/sq0.5/ --dtype float16 --smoothquant 0.5 --per_channel --per_token
# 20B model
python convert_checkpoint.py --model_dir ./internlm-chat-20b --output_dir ./internlm-chat-20b/smooth_internlm/sq0.5/ --dtype float16 --smoothquant 0.5 --per_channel --per_token
Test with ../run.py
or ../summarize.py
:
python ../run.py --max_output_len=120 \
--input_text 'Tell me about yourself.' \
--tokenizer_dir ./internlm-chat-7b/ \
--engine_dir ./internlm-chat-7b/smooth_internlm/sq0.5/
python ../run.py --max_output_len=120 \
--input_text 'Tell me about yourself.' \
--tokenizer_dir ./internlm-chat-20b/ \
--engine_dir ./internlm-chat-20b/smooth_internlm/sq0.5/
python ../summarize.py --test_trt_llm --test_hf \
--hf_model_dir ./internlm-chat-7b \
--data_type fp16 \
--engine_dir ./internlm-chat-7b/smooth_internlm/sq0.5/
python ../summarize.py --test_trt_llm --test_hf \
--hf_model_dir ./internlm-chat-20b \
--data_type fp16 \
--engine_dir ./internlm-chat-20b/smooth_internlm/sq0.5/
To run a TensorRT-LLM InternLM model using the engines generated by trtllm-build
# InternLM 7B with fp16
python ../run.py --max_output_len=120 \
--input_text 'Tell me about yourself.' \
--tokenizer_dir ./internlm-chat-7b/ \
--engine_dir=./internlm-chat-7b/trt_engines/fp16/1-gpu/
# InternLM 7B with bf16
python ../run.py --max_output_len=120 \
--input_text 'Tell me about yourself.' \
--tokenizer_dir ./internlm-chat-7b/ \
--engine_dir=./internlm-chat-7b/trt_engines/bf16/1-gpu/
# InternLM 7B with int8 weight only quantization
python ../run.py --max_output_len=120 \
--input_text 'Tell me about yourself.' \
--tokenizer_dir ./internlm-chat-7b/ \
--engine_dir=./internlm-chat-7b/trt_engines/weight_only/1-gpu/
# InternLM 7B with fp16 and tensor parallelism
mpirun -n 2 --allow-run-as-root \
python ../run.py --max_output_len=120 \
--input_text 'Tell me about yourself.' \
--tokenizer_dir ./internlm-chat-7b/ \
--engine_dir=./internlm-chat-7b/trt_engines/fp16/2-gpu/
# InternLM 20B with fp16 and tensor parallelism and pipeline parallelism
mpirun -n 4 --allow-run-as-root \
python ../run.py --max_output_len=120 \
--input_text 'Tell me about yourself.' \
--tokenizer_dir ./internlm-chat-7b/ \
--engine_dir=./internlm-chat-7b/trt_engines/bf16/4-gpu/
# Run summarization using the InternLM 7B model in FP16.
python ../summarize.py --test_trt_llm --test_hf \
--hf_model_dir ./internlm-chat-7b/ \
--data_type fp16 \
--engine_dir ./engine_outputs
# Run summarization using the InternLM 7B model quantized to INT8.
python ../summarize.py --test_trt_llm --test_hf \
--hf_model_dir ./internlm-chat-7b/ \
--data_type fp16 \
--engine_dir ./engine_outputs
# Run summarization using the InternLM 7B model in FP16 using two GPUs.
mpirun -n 2 --allow-run-as-root \
python ../summarize.py --test_trt_llm --test_hf \
--hf_model_dir ./internlm-chat-7b/ \
--data_type fp16 \
--engine_dir ./internlm-chat-7b/trt_engines/fp16/2-gpu/
# Run summarization using the InternLM 20B model in BF16 using 4 GPUs.
mpirun -n 4 --allow-run-as-root \
python ../summarize.py --test_trt_llm --test_hf \
--hf_model_dir ./internlm-chat-20b/ \
--data_type bf16 \
--engine_dir ./internlm-chat-20b/trt_engines/bf16/4-gpu/