This is a kind of model to design unconstrained-structural protein sequences The architecture of the unconstrained-structural protein sequence design model-DeepUSPS
# Our version of Cuda is 11.1, version of cuDNN is 8.4.1, and operation system is Ubuntu(20.04)
# Once this is done, you can run the following commands to install the required environment:
conda env create -f environment.yml
usage: hallucinate.py [-h] [-l LEN] [-s SEQ] [-o FAS] [--ocsv= CSV]
[--SPFESN= SPDIR] [--RTIDR= RTDIR]
[--aa_weight= AA_WEIGHT]
optional arguments:
-h, --help show this help message and exit
-l LEN, --len= LEN sequence length (default: 100)
-s SEQ, --seq= SEQ starting sequence (default: )
-o FAS, --ofas= FAS save final sequence to a FASTA files (default: )
--ocsv= CSV save trajectory to a CSV files (default: )
--SPFESN= SPDIR path to SPFESN network weights (default: ../SPSP)
--RTIDR= RTDIR path to RTIDR network weights (default: ../RTRT)
--aa_weight= AA_WEIGHT weight for the aa composition biasing loss term (default: 0.0)
python ./DeepUSPS.py -l 200 -o seq.fa
python ./DeepUSPS.py \
-s KVFGRCELAAAMKRHGLDNYRGYSLGNWVCAAKFESNFNTQATNRNTDGSTDYGILQINSRWWCNDGRTPGSRNLCNIPCSALLSSDITASVNCAKKIVSDGNGMNAWVAWRNRCKGTDVQAWIRGCRL \ # PDB ID 6LYZ
--aa_weight=1.0 \ # turn on amino acid composition biasing term
--ocsv= seq.csv
We refer to the paper of De novo protein design by deep network hallucination. We are grateful for the previous work of I Anishchenko, TM Chidyausiku, S Ovchinnikov, SJ Pellock, D Baker.