Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Modified newtons method #1068

Open
wants to merge 8 commits into
base: master
Choose a base branch
from
37 changes: 37 additions & 0 deletions src/Numerics.Tests/OptimizationTests/NewtonMinimizerTests.cs
Original file line number Diff line number Diff line change
Expand Up @@ -84,6 +84,32 @@ protected override void Evaluate()
}
}

public class LazySixHumpCamelObjectiveFunction : LazyObjectiveFunctionBase
{
public LazySixHumpCamelObjectiveFunction() : base(true, true) { }

public override IObjectiveFunction CreateNew()
{
return new LazySixHumpCamelObjectiveFunction();
}

protected override void EvaluateValue()
{
Value = SixHumpCamelFunction.Value(Point);
}

protected override void EvaluateGradient()
{
Gradient = SixHumpCamelFunction.Gradient(Point);
}

protected override void EvaluateHessian()
{
Hessian = SixHumpCamelFunction.Hessian(Point);
}

}

[TestFixture]
public class NewtonMinimizerTests
{
Expand Down Expand Up @@ -153,6 +179,17 @@ public void FindMinimum_Linesearch_Rosenbrock_Overton()
Assert.That(Math.Abs(result.MinimizingPoint[1] - 1.0), Is.LessThan(1e-3));
}

[Test]
public void FindMinimum_SixHumpCamel_IndefiniteHessian()
{
var obj = new LazySixHumpCamelObjectiveFunction();
var solver = new NewtonMinimizer(1e-5, 1000, true, HessianModifiers.ReverseNegativeEigenValues);
var result = solver.FindMinimum(obj, new DenseVector(new double[] { 1.0, -0.6 }));

Assert.That(result.MinimizingPoint[0], Is.EqualTo(0.0898).Within(1e-3));
Assert.That(result.MinimizingPoint[1], Is.EqualTo(-0.7126).Within(1e-3));
}

private class MghTestCaseEnumerator : IEnumerable<ITestCaseData>
{
private static readonly string[] _ignore_list =
Expand Down
Original file line number Diff line number Diff line change
@@ -0,0 +1,95 @@
// <copyright file="SixHumpCamelFunction.cs" company="Math.NET">
// Math.NET Numerics, part of the Math.NET Project
// https://numerics.mathdotnet.com
// https://github.com/mathnet/mathnet-numerics
//
// Copyright (c) 2009-$CURRENT_YEAR$ Math.NET
//
// Permission is hereby granted, free of charge, to any person
// obtaining a copy of this software and associated documentation
// files (the "Software"), to deal in the Software without
// restriction, including without limitation the rights to use,
// copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the
// Software is furnished to do so, subject to the following
// conditions:
//
// The above copyright notice and this permission notice shall be
// included in all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
// OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
// HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
// WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
// OTHER DEALINGS IN THE SOFTWARE.
// </copyright>

using MathNet.Numerics.LinearAlgebra;
using MathNet.Numerics.LinearAlgebra.Double;

namespace MathNet.Numerics.Tests.OptimizationTests.TestFunctions
{
/// <summary>
/// Six-Hump Camel Function, see http://www.sfu.ca/~ssurjano/camel6.html for formula and global minimum locations
/// </summary>
public static class SixHumpCamelFunction
{
public static double Value(Vector<double> input)
{
double x = input[0];
double y = input[1];

double x2 = x * x;
double x4 = x * x * x * x;
double y2 = y * y;

return x2 * (4 - 2.1 * x2 + x4 / 3) + x * y + 4 * y2 * (y2 - 1);
}

public static Vector<double> Gradient(Vector<double> input)
{
double x = input[0];
double y = input[1];

double x3 = x * x * x;
double x5 = x * x * x * x * x;
double y2 = y * y;
double y3 = y * y * y;

Vector<double> output = new DenseVector(2);

output[0] = 2 * (4 * x - 4.2 * x3 + x5 + 0.5 * y);
output[1] = x - 8 * y + 16 * y3;
return output;
}

public static Matrix<double> Hessian(Vector<double> input)
{
double x = input[0];
double y = input[1];

double x2 = x * x;
double x4 = x * x * x * x;
double y2 = y * y;


Matrix<double> output = new DenseMatrix(2, 2);
output[0, 0] = 10 * (0.8 - 2.52 * x2 + x4);
output[1, 1] = 48 * y2 - 8;
output[0, 1] = 1;
output[1, 0] = output[0, 1];
return output;
}

public static Vector<double> Minimum
{
get
{
return new DenseVector(new double[] { 0.0898, -0.7126 });
}
}
}
}
43 changes: 43 additions & 0 deletions src/Numerics/Optimization/HessianModifiers.cs
Original file line number Diff line number Diff line change
@@ -0,0 +1,43 @@
// <copyright file="HessianModifiers.cs" company="Math.NET">
// Math.NET Numerics, part of the Math.NET Project
// https://numerics.mathdotnet.com
// https://github.com/mathnet/mathnet-numerics
//
// Copyright (c) 2009-$CURRENT_YEAR$ Math.NET
//
// Permission is hereby granted, free of charge, to any person
// obtaining a copy of this software and associated documentation
// files (the "Software"), to deal in the Software without
// restriction, including without limitation the rights to use,
// copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the
// Software is furnished to do so, subject to the following
// conditions:
//
// The above copyright notice and this permission notice shall be
// included in all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
// OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
// HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
// WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
// OTHER DEALINGS IN THE SOFTWARE.
// </copyright>

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;

namespace MathNet.Numerics.Optimization
{
public enum HessianModifiers
{
None,
ReverseNegativeEigenValues
strMikhailPotapenko marked this conversation as resolved.
Show resolved Hide resolved
}
}
51 changes: 47 additions & 4 deletions src/Numerics/Optimization/NewtonMinimizer.cs
Original file line number Diff line number Diff line change
Expand Up @@ -30,6 +30,7 @@
using System;
using MathNet.Numerics.LinearAlgebra;
using MathNet.Numerics.Optimization.LineSearch;
using MathNet.Numerics.LinearAlgebra.Factorization;

namespace MathNet.Numerics.Optimization
{
Expand All @@ -38,20 +39,22 @@ public sealed class NewtonMinimizer : IUnconstrainedMinimizer
public double GradientTolerance { get; set; }
public int MaximumIterations { get; set; }
public bool UseLineSearch { get; set; }
public HessianModifiers Modifier { get; set; }

public NewtonMinimizer(double gradientTolerance, int maximumIterations, bool useLineSearch = false)
public NewtonMinimizer(double gradientTolerance, int maximumIterations, bool useLineSearch = false, HessianModifiers modifier = HessianModifiers.None)
{
GradientTolerance = gradientTolerance;
MaximumIterations = maximumIterations;
UseLineSearch = useLineSearch;
Modifier = modifier;
}

public MinimizationResult FindMinimum(IObjectiveFunction objective, Vector<double> initialGuess)
{
return Minimum(objective, initialGuess, GradientTolerance, MaximumIterations, UseLineSearch);
return Minimum(objective, initialGuess, GradientTolerance, MaximumIterations, UseLineSearch, Modifier);
}

public static MinimizationResult Minimum(IObjectiveFunction objective, Vector<double> initialGuess, double gradientTolerance=1e-8, int maxIterations=1000, bool useLineSearch=false)
public static MinimizationResult Minimum(IObjectiveFunction objective, Vector<double> initialGuess, double gradientTolerance=1e-8, int maxIterations=1000, bool useLineSearch=false, HessianModifiers modifier=HessianModifiers.None)
{
if (!objective.IsGradientSupported)
{
Expand Down Expand Up @@ -83,7 +86,7 @@ public static MinimizationResult Minimum(IObjectiveFunction objective, Vector<do
{
ValidateHessian(objective);

var searchDirection = objective.Hessian.LU().Solve(-objective.Gradient);
var searchDirection = CalculateSearchDirection(objective, modifier);
if (searchDirection * objective.Gradient >= 0)
{
searchDirection = -objective.Gradient;
Expand Down Expand Up @@ -125,6 +128,46 @@ public static MinimizationResult Minimum(IObjectiveFunction objective, Vector<do
return new MinimizationWithLineSearchResult(objective, iterations, ExitCondition.AbsoluteGradient, totalLineSearchSteps, iterationsWithNontrivialLineSearch);
}

static Vector<double> CalculateSearchDirection(IObjectiveFunction objective, HessianModifiers modifier)
{
Vector<double> searchDirection = null;
switch (modifier)
{
case HessianModifiers.None:
searchDirection = SolveLU(objective);
break;
case HessianModifiers.ReverseNegativeEigenValues:
searchDirection = ReverseNegativeEigenValuesAndSolve(objective);
break;
}

return searchDirection;
}

static Vector<double> SolveLU(IObjectiveFunction objective)
{
return objective.Hessian.LU().Solve(-objective.Gradient);
}

/// <summary>
/// Force the Hessian to be positive definite by reversing the negative eigenvalues. Use the EVD decomposition to then solve for the search direction.
/// Implementation based on Philip E. Gill, Walter Murray, and Margaret H. Wright, Practical Optimization, 1981, 107–8.
/// </summary>
/// <param name="objective"></param>
/// <returns></returns>
static Vector<double> ReverseNegativeEigenValuesAndSolve(IObjectiveFunction objective)
strMikhailPotapenko marked this conversation as resolved.
Show resolved Hide resolved
{
Evd<double> evd = objective.Hessian.Evd(Symmetricity.Symmetric);
for (int i = 0; i < evd.EigenValues.Count; i++)
{
if (evd.EigenValues[i].Real < double.Epsilon)
{
evd.EigenValues[i] = Math.Max(-evd.EigenValues[i].Real, double.Epsilon);
strMikhailPotapenko marked this conversation as resolved.
Show resolved Hide resolved
}
}
return evd.Solve(-objective.Gradient);
}

static void ValidateGradient(IObjectiveFunctionEvaluation eval)
{
foreach (var x in eval.Gradient)
Expand Down