Skip to content

Commit

Permalink
improvise a max vit with register tokens
Browse files Browse the repository at this point in the history
  • Loading branch information
lucidrains committed Oct 6, 2023
1 parent 680d446 commit df8733d
Show file tree
Hide file tree
Showing 4 changed files with 343 additions and 4 deletions.
2 changes: 1 addition & 1 deletion .github/workflows/python-test.yml
Original file line number Diff line number Diff line change
Expand Up @@ -15,7 +15,7 @@ jobs:
runs-on: ubuntu-latest
strategy:
matrix:
python-version: [3.7, 3.8, 3.9]
python-version: [3.8, 3.9]

steps:
- uses: actions/checkout@v2
Expand Down
4 changes: 2 additions & 2 deletions setup.py
Original file line number Diff line number Diff line change
Expand Up @@ -3,7 +3,7 @@
setup(
name = 'vit-pytorch',
packages = find_packages(exclude=['examples']),
version = '1.5.0',
version = '1.5.2',
license='MIT',
description = 'Vision Transformer (ViT) - Pytorch',
long_description_content_type = 'text/markdown',
Expand All @@ -16,7 +16,7 @@
'image recognition'
],
install_requires=[
'einops>=0.6.1',
'einops>=0.7.0',
'torch>=1.10',
'torchvision'
],
Expand Down
2 changes: 1 addition & 1 deletion vit_pytorch/max_vit.py
Original file line number Diff line number Diff line change
Expand Up @@ -173,7 +173,7 @@ def forward(self, x):

# split heads

q, k, v = map(lambda t: rearrange(t, 'b n (h d ) -> b h n d', h = h), (q, k, v))
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = h), (q, k, v))

# scale

Expand Down
339 changes: 339 additions & 0 deletions vit_pytorch/max_vit_with_registers.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,339 @@
from functools import partial

import torch
from torch import nn, einsum
import torch.nn.functional as F
from torch.nn import Module, ModuleList, Sequential

from einops import rearrange, repeat, reduce, pack, unpack
from einops.layers.torch import Rearrange, Reduce

# helpers

def exists(val):
return val is not None

def default(val, d):
return val if exists(val) else d

def pack_one(x, pattern):
return pack([x], pattern)

def unpack_one(x, ps, pattern):
return unpack(x, ps, pattern)[0]

def cast_tuple(val, length = 1):
return val if isinstance(val, tuple) else ((val,) * length)

# helper classes

def FeedForward(dim, mult = 4, dropout = 0.):
inner_dim = int(dim * mult)
return Sequential(
nn.LayerNorm(dim),
nn.Linear(dim, inner_dim),
nn.GELU(),
nn.Dropout(dropout),
nn.Linear(inner_dim, dim),
nn.Dropout(dropout)
)

# MBConv

class SqueezeExcitation(Module):
def __init__(self, dim, shrinkage_rate = 0.25):
super().__init__()
hidden_dim = int(dim * shrinkage_rate)

self.gate = Sequential(
Reduce('b c h w -> b c', 'mean'),
nn.Linear(dim, hidden_dim, bias = False),
nn.SiLU(),
nn.Linear(hidden_dim, dim, bias = False),
nn.Sigmoid(),
Rearrange('b c -> b c 1 1')
)

def forward(self, x):
return x * self.gate(x)

class MBConvResidual(Module):
def __init__(self, fn, dropout = 0.):
super().__init__()
self.fn = fn
self.dropsample = Dropsample(dropout)

def forward(self, x):
out = self.fn(x)
out = self.dropsample(out)
return out + x

class Dropsample(Module):
def __init__(self, prob = 0):
super().__init__()
self.prob = prob

def forward(self, x):
device = x.device

if self.prob == 0. or (not self.training):
return x

keep_mask = torch.FloatTensor((x.shape[0], 1, 1, 1), device = device).uniform_() > self.prob
return x * keep_mask / (1 - self.prob)

def MBConv(
dim_in,
dim_out,
*,
downsample,
expansion_rate = 4,
shrinkage_rate = 0.25,
dropout = 0.
):
hidden_dim = int(expansion_rate * dim_out)
stride = 2 if downsample else 1

net = Sequential(
nn.Conv2d(dim_in, hidden_dim, 1),
nn.BatchNorm2d(hidden_dim),
nn.GELU(),
nn.Conv2d(hidden_dim, hidden_dim, 3, stride = stride, padding = 1, groups = hidden_dim),
nn.BatchNorm2d(hidden_dim),
nn.GELU(),
SqueezeExcitation(hidden_dim, shrinkage_rate = shrinkage_rate),
nn.Conv2d(hidden_dim, dim_out, 1),
nn.BatchNorm2d(dim_out)
)

if dim_in == dim_out and not downsample:
net = MBConvResidual(net, dropout = dropout)

return net

# attention related classes

class Attention(Module):
def __init__(
self,
dim,
dim_head = 32,
dropout = 0.,
window_size = 7
):
super().__init__()
assert (dim % dim_head) == 0, 'dimension should be divisible by dimension per head'

self.heads = dim // dim_head
self.scale = dim_head ** -0.5

self.norm = nn.LayerNorm(dim)
self.to_qkv = nn.Linear(dim, dim * 3, bias = False)

self.attend = nn.Sequential(
nn.Softmax(dim = -1),
nn.Dropout(dropout)
)

self.to_out = nn.Sequential(
nn.Linear(dim, dim, bias = False),
nn.Dropout(dropout)
)

# relative positional bias

self.rel_pos_bias = nn.Embedding((2 * window_size - 1) ** 2, self.heads)

pos = torch.arange(window_size)
grid = torch.stack(torch.meshgrid(pos, pos, indexing = 'ij'))
grid = rearrange(grid, 'c i j -> (i j) c')
rel_pos = rearrange(grid, 'i ... -> i 1 ...') - rearrange(grid, 'j ... -> 1 j ...')
rel_pos += window_size - 1
rel_pos_indices = (rel_pos * torch.tensor([2 * window_size - 1, 1])).sum(dim = -1)

self.register_buffer('rel_pos_indices', rel_pos_indices, persistent = False)

def forward(self, x):
device, h = x.device, self.heads

x = self.norm(x)

# project for queries, keys, values

q, k, v = self.to_qkv(x).chunk(3, dim = -1)

# split heads

q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = h), (q, k, v))

# scale

q = q * self.scale

# sim

sim = einsum('b h i d, b h j d -> b h i j', q, k)

# add positional bias

bias = self.rel_pos_bias(self.rel_pos_indices)
bias = rearrange(bias, 'i j h -> h i j')

num_registers = sim.shape[-1] - bias.shape[-1]
bias = F.pad(bias, (num_registers, 0, num_registers, 0), value = 0.)

sim = sim + bias

# attention

attn = self.attend(sim)

# aggregate

out = einsum('b h i j, b h j d -> b h i d', attn, v)

# combine heads out

out = rearrange(out, 'b h n d -> b n (h d)')
return self.to_out(out)

class MaxViT(Module):
def __init__(
self,
*,
num_classes,
dim,
depth,
dim_head = 32,
dim_conv_stem = None,
window_size = 7,
mbconv_expansion_rate = 4,
mbconv_shrinkage_rate = 0.25,
dropout = 0.1,
channels = 3,
num_register_tokens = 4
):
super().__init__()
assert isinstance(depth, tuple), 'depth needs to be tuple if integers indicating number of transformer blocks at that stage'

# convolutional stem

dim_conv_stem = default(dim_conv_stem, dim)

self.conv_stem = Sequential(
nn.Conv2d(channels, dim_conv_stem, 3, stride = 2, padding = 1),
nn.Conv2d(dim_conv_stem, dim_conv_stem, 3, padding = 1)
)

# variables

num_stages = len(depth)

dims = tuple(map(lambda i: (2 ** i) * dim, range(num_stages)))
dims = (dim_conv_stem, *dims)
dim_pairs = tuple(zip(dims[:-1], dims[1:]))

self.layers = nn.ModuleList([])

# window size

self.window_size = window_size

self.register_tokens = nn.ParameterList([])

# iterate through stages

for ind, ((layer_dim_in, layer_dim), layer_depth) in enumerate(zip(dim_pairs, depth)):
for stage_ind in range(layer_depth):
is_first = stage_ind == 0
stage_dim_in = layer_dim_in if is_first else layer_dim

conv = MBConv(
stage_dim_in,
layer_dim,
downsample = is_first,
expansion_rate = mbconv_expansion_rate,
shrinkage_rate = mbconv_shrinkage_rate
)

block_attn = Attention(dim = layer_dim, dim_head = dim_head, dropout = dropout, window_size = window_size)
block_ff = FeedForward(dim = layer_dim, dropout = dropout)

grid_attn = Attention(dim = layer_dim, dim_head = dim_head, dropout = dropout, window_size = window_size)
grid_ff = FeedForward(dim = layer_dim, dropout = dropout)

register_tokens = nn.Parameter(torch.randn(num_register_tokens, layer_dim))

self.layers.append(ModuleList([
conv,
ModuleList([block_attn, block_ff]),
ModuleList([grid_attn, grid_ff])
]))

self.register_tokens.append(register_tokens)

# mlp head out

self.mlp_head = nn.Sequential(
Reduce('b d h w -> b d', 'mean'),
nn.LayerNorm(dims[-1]),
nn.Linear(dims[-1], num_classes)
)

def forward(self, x):
b, w = x.shape[0], self.window_size

x = self.conv_stem(x)

for (conv, (block_attn, block_ff), (grid_attn, grid_ff)), register_tokens in zip(self.layers, self.register_tokens):
x = conv(x)

# block-like attention

x = rearrange(x, 'b d (x w1) (y w2) -> b x y w1 w2 d', w1 = w, w2 = w)

# prepare register tokens

r = repeat(register_tokens, 'n d -> b x y n d', b = b, x = x.shape[1],y = x.shape[2])
r, register_batch_ps = pack_one(r, '* n d')

x, window_ps = pack_one(x, 'b x y * d')
x, batch_ps = pack_one(x, '* n d')
x, register_ps = pack([r, x], 'b * d')

x = block_attn(x) + x
x = block_ff(x) + x

r, x = unpack(x, register_ps, 'b * d')

x = unpack_one(x, batch_ps, '* n d')
x = unpack_one(x, window_ps, 'b x y * d')
x = rearrange(x, 'b x y w1 w2 d -> b d (x w1) (y w2)')

r = unpack_one(r, register_batch_ps, '* n d')

# grid-like attention

x = rearrange(x, 'b d (w1 x) (w2 y) -> b x y w1 w2 d', w1 = w, w2 = w)

# prepare register tokens

r = reduce(r, 'b x y n d -> b n d', 'mean')
r = repeat(r, 'b n d -> b x y n d', x = x.shape[1], y = x.shape[2])
r, register_batch_ps = pack_one(r, '* n d')

x, window_ps = pack_one(x, 'b x y * d')
x, batch_ps = pack_one(x, '* n d')
x, register_ps = pack([r, x], 'b * d')

x = grid_attn(x) + x

r, x = unpack(x, register_ps, 'b * d')

x = grid_ff(x) + x

x = unpack_one(x, batch_ps, '* n d')
x = unpack_one(x, window_ps, 'b x y * d')
x = rearrange(x, 'b x y w1 w2 d -> b d (w1 x) (w2 y)')

return self.mlp_head(x)

0 comments on commit df8733d

Please sign in to comment.