Skip to content

Kipes SDK - The High-Level Event Processing SDK.

License

LGPL-3.0, Unknown licenses found

Licenses found

LGPL-3.0
LICENSE
Unknown
license-header.yaml
Notifications You must be signed in to change notification settings

kipe-io/kipes-sdk

Repository files navigation

Kipes SDK

License: LGPL v3 Build Status Maven Central Contributors

The Kipes SDK simplifies the implementation of Kafka stream processing applications. The SDK provides a high-level interface to describe stream analytics, eliminates the need for much of the repetitive technical boilerplate code, and provides scaffolding to set up stream processing microservices quickly and structured.

We built the SDK applying the concept of Linux command pipes, making it easy to pick a specific command for each stream transformation case and forward the results to the next. The SDK commands cover areas like:

  • Event and field manipulation
  • Event filtering
  • Event correlation
  • Statistical evaluations
  • Event time adjustments

With these dedicated commands, Engineers can directly create complex stream-processing applications in a much more business logic-aligned language.

Example

Story: As a ProductMarketer I want to know how many customers visited a particular Product but didn't purchased it, so that I can identify what are the most visited Products that not get purchased."

	KipesBuilder.init(streamsBuilder)
	  .from(topicShopEvents)
	  .transaction()
	    .groupBy((key, value) -> value.getSessionId())
	    .startswith((key, value) -> value.getType() == ProductVisited)
	    .endswith((key, value) -> value.getType() == NoPurchase)
	    .emit(END)
	  .stats()
	    .groupBy((key, value) -> value.getProductId())
	    .count().as("qtyVisitedButNotBought")
	    .build()
	  .to(topicProductStats);

Besides this easy to use stream processing commands the SDK provides specialized test classes so that Engineers can quickly set up unit tests around their stream topologies without connecting to an actual running Kafka cluster. The testbed speeds up development and delivery time and makes testing and understanding complex applications more accessible.

To further speed up the development of stream-processing microservices, our Kipes SDK comes with dedicated classes and blueprints to scaffold microservices quickly. We support multiple application frameworks like Micronaut or Spring Boot (planned).

Table of Contents

Features

  • High-level, multi-faceted stream processing commands in a fluent API
  • Out-of-the-box serializers for JSON, Avro, and Protobuf
  • Custom serializer support
  • Stream testing utilities
  • And more!

Requirements

  • Java 11 or higher

Getting Started

Add the required dependencies streams-kafka and/or streams-kafka-test to your project using Maven or Gradle.

Maven Central Maven Central

Maven

<dependencies>
	<!-- Streams Kafka -->
	<dependency>
		<groupId>io.kipe</groupId>
		<artifactId>streams-kafka</artifactId>
		<version>${kipes.version}</version>
	</dependency>

	<!-- Streams Kafka Test (Optional) -->
	<dependency>
		<groupId>io.kipe</groupId>
		<artifactId>streams-kafka-test</artifactId>
		<version>${kipes.version}</version>
		<scope>test</scope>
	</dependency>
</dependencies>

Gradle

dependencies {
    // Streams Kafka
    implementation "io.kipe:streams-kafka:$kipesVersion"

    // Streams Kafka Test (Optional)
    testImplementation "io.kipe:streams-kafka-test:$kipesVersion"
}

Usage

Initialization and Building Stream Topologies

Follow these steps to create a KipesBuilder instance, define an input KStream, and build the stream topology by chaining operations:

// 1. Create a KipesBuilder instance with a StreamsBuilder object
StreamsBuilder streamsBuilder = new StreamsBuilder();
KipesBuilder<K, V> kipesBuilder = KipesBuilder.init(streamsBuilder);

// 2. Define the input KStream and pass it to the from() method
KStream<String, Integer> inputStream = streamsBuilder.stream("inputTopic");
kipesBuilder.from(inputStream, Serdes.String(), Serdes.Integer());

// 3. Chain operations on the KipesBuilder instance to build the stream topology
kipesBuilder
    .logDebug("Input")
    .filter((key, value) -> value > 0)
    .logDebug("Filtered")
    .to(outputTopic);

GenericRecord

GenericRecord is a flexible data representation in the Kipes SDK for storing and manipulating records with various fields. It allows reading and writing data without generating code based on a specific schema, making it ideal for evolving data structures or handling data with different field combinations. The Kipes SDK uses GenericRecord in builder classes such as EvalBuilder, BinBuilder, StatsBuilder, and TableBuilder.

Create a GenericRecord instance and set field values using the fluent interface or the set() method:

GenericRecord record=GenericRecord.create()
    .with("sensorId","S001")
    .with("timestamp",1628493021L)
    .with("temperature",25.6);

record.set("newField": "value");

Retrieve field values with get(fieldName) and perform advanced operations using other GenericRecord methods.

Serializers

The Kipes SDK comes with pre-packaged serializers for JSON, Avro, and Protobuf. To use custom serializers or override default serializers, provide a Serde to the builder methods that require streams.

Default Serdes

Properties props = new Properties();
props.put(StreamsConfig.APPLICATION_ID_CONFIG, "my-app-id");
props.put(StreamsConfig.BOOTSTRAP_SERVERS_CONFIG, "localhost:9092");
props.put(StreamsConfig.DEFAULT_KEY_SERDE_CLASS_CONFIG, Serdes.String().getClass());
props.put(StreamsConfig.DEFAULT_VALUE_SERDE_CLASS_CONFIG, Serdes.Integer().getClass());

StreamsConfig config = new StreamsConfig(props);

JSON

For JSON serialization and deserialization using Jackson, obtain Serde instances through the JsonSerdeFactory:

Serde<MyDataClass> jsonSerde = JsonSerdeFactory.getJsonSerde(MyDataClass.class);

Avro

For Avro serialization and deserialization using Confluent classes, obtain Serde instances through the AvroSerdeFactory. Here are some options:

Serde<FooEvent> serde = AvroSerdeFactory.createSpecificAvroSerde(SCHEMA_REGISTRY_URL_CONFIG,false);

GenericAvroSerde serde = AvroSerdeFactory.createGenericAvroSerde(SCHEMA_REGISTRY_URL_CONFIG,false);

PrimitiveAvroSerde<Integer> serde = AvroSerdeFactory.createPrimitiveAvroSerde(SCHEMA_REGISTRY_URL_CONFIG,false);

Protobuf

For Protobuf serialization and deserialization using Confluent classes, obtain Serde instances through the ProtobufSerdeFactory. Here's an option:

KafkaProtobufSerde<Message> protoSerde=ProtobufSerdeFactory.createProtoSerde(SCHEMA_REGISTRY_URL_CONFIG,false);

Testing

Kipes SDK provides testing support for Kipe topologies through two base classes:

  • AbstractTopologyTest
  • AbstractGenericRecordProcessorTopologyTest

These classes utilize TopologyTestDriver to test Kipe applications without a running Kafka cluster.

To configure topology-specific properties, pass a map of properties into the super() method in the constructor of your test class:

Testing with AbstractTopologyTest

AbstractTopologyTest is a base class for testing Kipe applications using TopologyTestDriver. To create tests for your builders, follow these steps:

  1. Extend AbstractTopologyTest.
  2. Implement initTopology() and initTestTopics() to set up the topology and test topics.
  3. Create test input and output topics using TopologyTestContext.
  4. Send and receive messages using TestInputTopic and TestOutputTopic.

Example

In this example, we will create a test for the simple topology from the "Initialization and Building Stream Topologies" section.

For example, in the SimpleTopologyTest class, you can pass an empty map:``

First, extend AbstractTopologyTest and implement the required methods:

import io.kipe.sdk.testing.AbstractTopologyTest;
import org.apache.kafka.streams.StreamsBuilder;
import org.apache.kafka.streams.Topology;

class SimpleTopologyTest extends AbstractTopologyTest {
    private final String INPUT_TOPIC = "inputTopic";
    private final String OUTPUT_TOPIC = "outputTopic";

    private TestInputTopic<String, Integer> inputTopic;
    private TestOutputTopic<String, Integer> outputTopic;

    public SimpleTopologyTest() {
        super(Map.of());
    }

    @Override
    protected void initTopology(TopologyTestContext topologyTestContext) {
        KipesBuilder<?, ?> kipesBuilder = KipesBuilder.init(topologyTestContext.getStreamsBuilder());

        kipesBuilder
                .from(topologyTestContext.createKStream(INPUT_TOPIC, Serdes.String(), Serdes.Integer()), Serdes.String(), Serdes.Integer())
                .logDebug("Input")
                .filter((key, value) -> value > 1)
                .logDebug("Filtered")
                .to(OUTPUT_TOPIC);
    }

    @Override
    protected void initTestTopics(TopologyTestContext topologyTestContext) {
        this.inputTopic = topologyTestContext.createTestInputTopic(INPUT_TOPIC, Serdes.String(), Serdes.Integer());
        this.outputTopic = topologyTestContext.createTestOutputTopic(OUTPUT_TOPIC, Serdes.String(), Serdes.Integer());
    }
}

Now, add a test method to send input records and verify the output records:

import org.junit.jupiter.api.Test;

import java.util.List;
import java.util.Map;

import static org.junit.jupiter.api.Assertions.assertEquals;

class SimpleTopologyTest extends AbstractTopologyTest {

    // ...

    @Test
    void testFilterPositiveValues() {
        // Send 5 input records to the input topic
        inputTopic.pipeInput("key1", 5);
        inputTopic.pipeInput("key2", -3);
        inputTopic.pipeInput("key3", 7);
        inputTopic.pipeInput("key4", 0);
        inputTopic.pipeInput("key5", 2);

        // Get 3 records back after the filter
        assertEquals(3, this.outputTopic.getQueueSize());
    }
}

Testing with AbstractGenericRecordProcessorTopologyTest

For topologies processing GenericRecords, extend AbstractGenericRecordProcessorTopologyTest:

  1. Extend AbstractGenericRecordProcessorTopologyTest.
  2. Override addGenericRecordProcessor() to add the specific processor. This abstracts initializing the topology and topics.
  3. Send GenericRecords to the input topic using provided utility methods.

Examples

Basic Example

Here's a simple example of using KipesBuilder to create a stream topology:

KipesBuilder<String, Integer> kipesBuilder = KipesBuilder.init(streamsBuilder);

// Chain various operations on the KipesBuilder instance
kipesBuilder
    .from(inputStream, Serdes.String(), Serdes.Integer())
    .logDebug("Input")
    .filter((key, value) -> value > 0)
    .logDebug("Filtered")
    .to(outputTopic);

// run the stream…

Advanced Example

This example demonstrates using KipesBuilder and sub-builders to create a more complex stream topology:

KipesBuilder<String, GenericRecord> builder = KipesBuilder
    .init(streamsBuilder)
    .from(inputStream)
    .withTopicsBaseName(SOURCE);

builder
    .bin()
    .field("input")
    .span(0.1)
    .build()
    .to(TARGET);

Documentation

TODO: Add instructions on how to generate project documentation, e.g., with GitHub Pages or another documentation tool.

Contributing

Contributions are welcome! Please read the contributing.md file for guidelines on how to contribute to this project.

License

This project is licensed under the GNU Lesser General Public License v3.0.

About

Kipes SDK - The High-Level Event Processing SDK.

Topics

Resources

License

LGPL-3.0, Unknown licenses found

Licenses found

LGPL-3.0
LICENSE
Unknown
license-header.yaml

Stars

Watchers

Forks

Packages

No packages published

Languages