Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Update #21

Merged
merged 1 commit into from
Jun 12, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
3 changes: 0 additions & 3 deletions app.py
Original file line number Diff line number Diff line change
Expand Up @@ -7,8 +7,6 @@
from streamlit_app.vision_assistant import vision_assistant
# from phoenix.trace.langchain import LangChainInstrumentor

# from streamlit_app.financial_assistant import financial_assistant

# Setup tracing
# LangChainInstrumentor().instrument()

Expand All @@ -19,7 +17,6 @@ def main():
dict_pages = {
"ReAct Agent": agent_react,
"Gemini Functions Agent": agent_gemini_functions,
# "Financial Assistant": financial_assistant,
"Chatbot Playground": chatbot,
"Vision Assistant": vision_assistant,
"Code Assistant": code_assistant,
Expand Down
29 changes: 29 additions & 0 deletions src/chains.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,29 @@
from langchain.llms.base import LLM
from langchain.prompts import BasePromptTemplate, PromptTemplate
from langchain_core.output_parsers import StrOutputParser
from langchain_core.runnables import Runnable, RunnableBranch


def condense_question_chain(
llm: LLM, prompt: BasePromptTemplate | None = None
) -> Runnable:
"""Builds a chain that condenses question and chat history to create a standalone question."""
if prompt is None:
template = (
"Given the following chat history and a follow up question, "
"rephrase the follow up question to be a standalone question, in its original language.\n\n"
"Chat History:\n{chat_history}\n\nFollow Up Question: {question}\nStandalone question:"
)
prompt = PromptTemplate.from_template(template)

chain = RunnableBranch(
(
# Both empty string and empty list evaluate to False
lambda x: not x.get("chat_history", False),
# If no chat history, then we just pass input
(lambda x: x["question"]),
),
# If chat history, then we pass inputs to LLM chain
prompt | llm | StrOutputParser(),
)
return chain
8 changes: 4 additions & 4 deletions src/tools/calculator_tool.py
Original file line number Diff line number Diff line change
Expand Up @@ -3,11 +3,11 @@
from pydantic import BaseModel, Field
from langchain_core.language_models import BaseLanguageModel
from langchain_core.prompts import BasePromptTemplate
from langchain_core.runnables import Runnable
from langchain.callbacks.manager import (
AsyncCallbackManagerForToolRun,
CallbackManagerForToolRun,
)
from langchain.chains.llm import LLMChain
from langchain.chains.llm_math.prompt import PROMPT
from langchain.tools import BaseTool

Expand All @@ -20,7 +20,7 @@ class CalculatorTool(BaseTool):
name = "Calculator"
description = "A useful tool for answering simple questions about math."
args_schema: Type[BaseModel] = CalculatorInput
llm_chain: LLMChain
llm_chain: Runnable

def _run(
self, query: str, run_manager: Optional[CallbackManagerForToolRun] = None
Expand All @@ -40,8 +40,8 @@ def from_llm(
llm: BaseLanguageModel,
prompt: BasePromptTemplate = PROMPT,
**kwargs: Any,
) -> LLMChain:
llm_chain = LLMChain(llm=llm, prompt=prompt)
) -> Runnable:
llm_chain = prompt | llm
return cls(llm_chain=llm_chain, **kwargs)


Expand Down
7 changes: 4 additions & 3 deletions src/tools/common.py
Original file line number Diff line number Diff line change
Expand Up @@ -11,7 +11,7 @@
llm = GoogleGenerativeAI(model="gemini-pro", temperature=0.0)

# Web Search Tool
search = TavilySearchAPIWrapper()
_search = TavilySearchAPIWrapper()
description = (
"A search engine optimized for comprehensive, accurate, "
"and trusted results. Useful for when you need to answer questions "
Expand All @@ -20,7 +20,7 @@
"If the user is asking about something that you don't know about, "
"you should probably use this tool to see if that can provide any information."
)
tavily_tool = TavilySearchResults(api_wrapper=search, description=description)
tavily_tool = TavilySearchResults(api_wrapper=_search, description=description)

# Wikipedia Tool
_wikipedia = WikipediaAPIWrapper()
Expand All @@ -29,7 +29,8 @@
func=_wikipedia.run,
description=(
"A wrapper around Wikipedia. Useful for when you need to answer general questions about "
"people, places, companies, facts, historical events, or other subjects."
"people, places, companies, facts, historical events, or other subjects. "
"Input should be a search query."
),
)

Expand Down
56 changes: 39 additions & 17 deletions streamlit_app/agent_react.py
Original file line number Diff line number Diff line change
@@ -1,8 +1,10 @@
import streamlit as st
from langchain_community.callbacks.streamlit import StreamlitCallbackHandler
from langchain_core.prompts import PromptTemplate
from langchain.agents import AgentExecutor
from langchain_google_genai import GoogleGenerativeAI

from src.chains import condense_question_chain
from src.agents import create_react_agent
from src.tools import (
tavily_tool,
Expand Down Expand Up @@ -65,25 +67,20 @@
agent=agent,
tools=tools,
return_intermediate_steps=True,
handle_parsing_errors=True,
max_execution_time=60,
verbose=True,
)

_chain = condense_question_chain(llm)


def init_messages() -> None:
clear_button = st.sidebar.button("Clear Chat", key="react_agent")
if clear_button or "react_messages" not in st.session_state:
st.session_state.react_messages = []


def get_response(user_input: str) -> str:
try:
return agent_executor.invoke({"input": user_input})
except Exception as e:
st.error(e)
return ""


def agent_react():
st.sidebar.title("ReAct Agent")
st.sidebar.info(
Expand All @@ -94,26 +91,51 @@ def agent_react():
init_messages()

# Display chat history
for human, ai in st.session_state.react_messages:
for human, ai, intermediate_steps in st.session_state.react_messages:
with st.chat_message("user"):
st.markdown(human)
with st.chat_message("assistant"):
st.markdown(ai)

with st.expander("Thoughts and Actions"):
for action, content in intermediate_steps:
st.markdown(f"`{action.log}`")
st.info(content)
st.markdown("---")

if user_input := st.chat_input("Your input"):
with st.chat_message("user"):
st.markdown(user_input)

chat_history = [x[:2] for x in st.session_state.react_messages]
with st.chat_message("assistant"):
with st.spinner("Thinking ..."):
response = get_response(user_input)
st_callback = StreamlitCallbackHandler(
parent_container=st.container(),
expand_new_thoughts=True,
collapse_completed_thoughts=True,
)
query = _chain.invoke(
{
"question": user_input,
"chat_history": chat_history,
},
)

response = agent_executor.invoke(
{"input": query},
config={"callbacks": [st_callback]},
)

output = response["output"].replace("$", r"\$")
st.markdown(response["output"])
intermediate_steps = response["intermediate_steps"]
# for r in intermediate_steps:
# r[1] = r[1].replace("$", r"\$")

with st.expander("Thoughts and Actions"):
for action, content in response["intermediate_steps"]:
st.markdown(f"`{action.log}`")
st.markdown(content)
st.markdown(output)

with st.expander("Sources"):
for _, content in intermediate_steps:
st.info(content)
st.markdown("---")

st.session_state.react_messages.append((user_input, output))
st.session_state.react_messages.append((user_input, output, intermediate_steps))