It is the implementation of the paper: A Spatial-Temporal Attention-Based Method and a New Dataset for Remote Sensing Image Change Detection.
Here, we provide the pytorch implementation of the spatial-temporal attention neural network (STANet) for remote sensing image change detection.
20230311:
- We have supplemented geospatial information (e.g., latitude and longitude coordinates) for each sample in LEVIR_CD. Specifically, we provide a
geojson
file and ajson
file, both of which contains the correspondence of the sample name and the geospatial location. Files and more information can be seen in theLEVIR_CD_spatial_info
folder.
20210112:
- add the pretraining weight of PAM. baidupan link, code: 2rja
20201105:
- add a demo for quick start.
- add more dataset loader modes.
- enhance the image augmentation module (crop and rotation).
20200601:
- first commit
- windows or Linux
- Python 3.6+
- CPU or NVIDIA GPU
- CUDA 9.0+
- PyTorch > 1.0
- visdom
Clone this repo:
git clone https://github.com/justchenhao/STANet
cd STANet
Install PyTorch 1.0+ and other dependencies (e.g., torchvision, visdom and dominate)
You can run a demo to get started.
python demo.py
The input samples are in samples
. After successfully run this script, you can find the predicted results in samples/output
.
You could download the LEVIR-CD at https://justchenhao.github.io/LEVIR/;
The path list in the downloaded folder is as follows:
path to LEVIR-CD:
├─train
│ ├─A
│ ├─B
│ ├─label
├─val
│ ├─A
│ ├─B
│ ├─label
├─test
│ ├─A
│ ├─B
│ ├─label
where A contains images of pre-phase, B contains images of post-phase, and label contains label maps.
The original image in LEVIR-CD has a size of 1024 * 1024, which will consume too much memory when training. Therefore, we can cut the origin images into smaller patches (e.g., 256 * 256, or 512 * 512). In our paper, we cut the original image into patches of 256 * 256 size without overlapping.
Make sure that the corresponding patch samples in the A, B, and label subfolders have the same name.
To view training results and loss plots, run this script and click the URL http://localhost:8097.
python -m visdom.server
Run the following script:
python ./train.py --save_epoch_freq 1 --angle 15 --dataroot path-to-LEVIR-CD-train --val_dataroot path-to-LEVIR-CD-val --name LEVIR-CDF0 --lr 0.001 --model CDF0 --batch_size 8 --load_size 256 --crop_size 256 --preprocess rotate_and_crop
Once finished, you could find the best model and the log files in the project folder.
python ./train.py --save_epoch_freq 1 --angle 15 --dataroot path-to-LEVIR-CD-train --val_dataroot path-to-LEVIR-CD-val --name LEVIR-CDFA0 --lr 0.001 --model CDFA --SA_mode BAM --batch_size 8 --load_size 256 --crop_size 256 --preprocess rotate_and_crop
python ./train.py --save_epoch_freq 1 --angle 15 --dataroot path-to-LEVIR-CD-train --val_dataroot path-to-LEVIR-CD-val --name LEVIR-CDFAp0 --lr 0.001 --model --SA_mode PAM CDFA --batch_size 8 --load_size 256 --crop_size 256 --preprocess rotate_and_crop
You could edit the file val.py, for example:
if __name__ == '__main__':
opt = TestOptions().parse() # get training options
opt = make_val_opt(opt)
opt.phase = 'test'
opt.dataroot = 'path-to-LEVIR-CD-test' # data root
opt.dataset_mode = 'changedetection'
opt.n_class = 2
opt.SA_mode = 'PAM' # BAM | PAM
opt.arch = 'mynet3'
opt.model = 'CDFA' # model type
opt.name = 'LEVIR-CDFAp0' # project name
opt.results_dir = './results/' # save predicted images
opt.epoch = 'best-epoch-in-val' # which epoch to test
opt.num_test = np.inf
val(opt)
then run the script: python val.py
. Once finished, you can find the prediction log file in the project directory and predicted image files in the result directory.
list=train
lr=0.001
dataset_mode=list
dataroot=path-to-dataroot
name=project_name
python ./train.py --num_threads 4 --display_id 0 --dataroot ${dataroot} --val_dataroot ${dataroot} --save_epoch_freq 1 --niter 100 --angle 15 --niter_decay 100 --display_env FAp0 --SA_mode PAM --name $name --lr $lr --model CDFA --batch_size 4 --dataset_mode $dataset_mode --val_dataset_mode $dataset_mode --split $list --load_size 256 --crop_size 256 --preprocess resize_rotate_and_crop
In this case, the data structure should be the following:
"""
data structure
-dataroot
├─A
├─train1.png
...
├─B
├─train1.png
...
├─label
├─train1.png
...
└─list
├─val.txt
├─test.txt
└─train.txt
# In list/train.txt, each low writes the filename of each sample,
# for example:
list/train.txt
train1.png
train2.png
...
"""
list=train
lr=0.001
dataset_type=CD_data1,CD_data2,...,
val_dataset_type=CD_data
dataset_mode=concat
name=project_name
python ./train.py --num_threads 4 --display_id 0 --dataset_type $dataset_type --val_dataset_type $val_dataset_type --save_epoch_freq 1 --niter 100 --angle 15 --niter_decay 100 --display_env FAp0 --SA_mode PAM --name $name --lr $lr --model CDFA --batch_size 4 --dataset_mode $dataset_mode --val_dataset_mode $dataset_mode --split $list --load_size 256 --crop_size 256 --preprocess resize_rotate_and_crop
Note, in this case, you should modify the get_dataset_info
in data/data_config.py
to add the corresponding dataset_name
and dataroot
in it.
if dataset_type == 'LEVIR_CD':
root = 'path-to-LEVIR_CD-dataroot'
elif ...
# add more dataset ...
For more Training/Testing guides, you could see the option files in the ./options/
folder.
If you use this code for your research, please cite our papers.
@Article{rs12101662,
AUTHOR = {Chen, Hao and Shi, Zhenwei},
TITLE = {A Spatial-Temporal Attention-Based Method and a New Dataset for Remote Sensing Image Change Detection},
JOURNAL = {Remote Sensing},
VOLUME = {12},
YEAR = {2020},
NUMBER = {10},
ARTICLE-NUMBER = {1662},
URL = {https://www.mdpi.com/2072-4292/12/10/1662},
ISSN = {2072-4292},
DOI = {10.3390/rs12101662}
}
Our code is inspired by pytorch-CycleGAN.