Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Bug with backtick #2009

Closed
MissileSilo opened this issue Jan 5, 2012 · 7 comments · Fixed by #4198
Closed

Bug with backtick #2009

MissileSilo opened this issue Jan 5, 2012 · 7 comments · Fixed by #4198
Labels

Comments

@MissileSilo
Copy link

Consider this code:

class jQueryCalendar
  saveDate: (inputField) ->
    alert 'Saving Date' + $(inputField).val()

  initCalendarObjects: ->
    params =
      onSelect: (dateText, inst) =>
        @saveDate `this`
    $('.timelineCalendar').datepicker params

After running coffee -c -b on this file, the following javascript is generated:

var jQueryCalendar;

jQueryCalendar = (function() {

  function jQueryCalendar() {}

  jQueryCalendar.prototype.saveDate = function(inputField) {
    return alert('Saving Date' + $(inputField).val());
  };

  jQueryCalendar.prototype.initCalendarObjects = function() {
    var params,
      _this = this;
    params = {
      onSelect: function(dateText, inst) {
        return _this.saveDate(_this);
      }
    };
    return $('.timelineCalendar').datepicker(params);
  };

  return jQueryCalendar;

})();

Notice that what was in backticks incorrectly replaced. "this" was replaced with "_this"

A workaround is to put a space after the backtick: this instead of this

But it seems like this is a bug that needs to be fixed.

@michaelficarra
Copy link
Collaborator

This actually seems like a desirable behaviour to me. I know it doesn't insert what was literally inside the backticks, but it does reference the value you would think you'd be referencing when writing it. By that, I mean the bound context, referenced as this or @ in the CoffeeScript and referenced as _this in the output JS. Regardless, this likely wasn't an intended compilation, and we should change it to be consistent with the rule that backticks are inserted literally.

@codelahoma
Copy link
Contributor

A bare this within the onSelect method would just reference the params object, wouldn't it?

Looks like CoffeeScript creates _this under the assumption that references to this or @ inside a class declaration are intended to refer to the class instance, no matter how they're nested.

Whether I'm right or wrong, I agree that backtick behavior should always be to literally insert, since the whole point is to be able to do something CoffeeScript can't or doesn't do.

@satyr
Copy link
Collaborator

satyr commented Jan 6, 2012

An outcome of using Literal node for too many things.

$ coffee -bsc
  class A
    `this`
    'constructor': ->

var A;

A = (function() {

  A.name = 'A';

  function A() {}

  A;


  A.prototype['constructor'] = function() {};

  return A;

})();

@michaelficarra
Copy link
Collaborator

Yeah, that's what I figured.

@shesek
Copy link

shesek commented Jan 7, 2012

@codelahoma,

Looks like CoffeeScript creates _this under the assumption that references to this or @ inside a class declaration are intended to refer to the class instance, no matter how they're nested.

CoffeScript doesn't assume anything, it only does that when you're using fat-arrow functions.

A bare this within the onSelect method would just reference the params object, wouldn't it?

No. Without the fat-arrow function, it would refer to the jQuery object.

@MissileSilo While it is a bug that should be fixed, (ab)using backticks like that to access the "unbound" value of this is something that you really shouldn't be doing. If you chose to use a fat-arrow function, you should accept the fact that you're losing access to the "original" this value instead of using workarounds like those.

Other than making the code extremely hard to understand (two different values for this, depending on backticks being used or not), its also very implementation-specific (The _this thingy is somewhat new, CoffeeScript used to bind the function instead - in which case both this and this would have the same value).

Just manually define an that = this, use that when referring to your jQueryCalendar instance and this when referring to $('.timelineCalendar').

@bato3
Copy link

bato3 commented Dec 27, 2012

As @shesek said:

Other than making the code extremely hard to understand (two different values for this, depending on backticks being used or not)

I'm not convinced, because we have escaped this and @.

I find hack:

  @saveDate ` this` #extra space

Now what do you say? Now it's a mess. :D

@satyr
Copy link
Collaborator

satyr commented Dec 28, 2012

I prefer (this) for readability. Bugs breed creativity.

lydell added a commit to lydell/coffee-script that referenced this issue Feb 2, 2016
Previously, the parser created `Literal` nodes for many things. This resulted in
information loss. Instead of being able to check the node type, we had to use
regexes to tell the different types of `Literal`s apart. That was a bit like
parsing literals twice: Once in the lexer, and once (or more) in the compiler.
It also caused problems, such as `` `this` `` and `this` being indistinguishable
(fixes jashkenas#2009).

Instead returning `new Literal` in the grammar, subtypes of it are now returned
instead, such as `NumberLiteral`, `StringLiteral` and `IdentifierLiteral`. `new
Literal` by itself is only used to represent code chunks that fit no category.

`StringWithInterpolations` has been added as a subtype of `Parens`, and
`RegexWithInterpolations` as a subtype of `Call`. This makes it easier for other
programs to make use of CoffeeScript's "AST" (nodes). For example, it is now
possible to distinguish between `"a #{b} c"` and `"a " + b + " c"`. Fixes jashkenas#4192.

Note, though, that some information is still lost, especially in the lexer. For
example, there is no way to distinguish a heredoc from a regular string, or a
heregex without interpolations from a regular regex.

After the new subtypes were added, they were taken advantage of, removing most
regexes in nodes.coffee. `SIMPLENUM` (which matches non-hex integers) had to be
kept, though, because such numbers need special handling in JavaScript (for
example in `1..toString()`).

An especially nice hack to get rid of was using `new String()` for the token
value for reserved identifiers (to be able to set a property on them which could
survive through the parser). Now it's a good old regular string.

In range literals, slices, splices and for loop steps when number literals
are involved, CoffeeScript can do some optimizations, such as precomputing the
value of, say, `5 - 3` (outputting `2` instead of `5 - 3` literally). As a side
bonus, this now also works with hexadecimal number literals, such as `0x02`.

Finally, this also improves the output of `coffee --nodes`:

    # Before:
    $ bin/coffee -ne 'while true
      "#{a}"
      break'
    Block
      While
        Value
          Bool
        Block
          Value
            Parens
              Block
                Op +
                  Value """"
                  Value
                    Parens
                      Block
                        Value "a" "break"

    # After:
    $ bin/coffee -ne 'while true
      "#{a}"
      break'
    Block
      While
        Value Bool: true
        Block
          Value
            StringWithInterpolations
              Block
                Op +
                  Value StringLiteral: ""
                  Value
                    Parens
                      Block
                        Value IdentifierLiteral: a
          StatementLiteral: break
lydell added a commit to lydell/coffee-script that referenced this issue Feb 3, 2016
Previously, the parser created `Literal` nodes for many things. This resulted in
information loss. Instead of being able to check the node type, we had to use
regexes to tell the different types of `Literal`s apart. That was a bit like
parsing literals twice: Once in the lexer, and once (or more) in the compiler.
It also caused problems, such as `` `this` `` and `this` being indistinguishable
(fixes jashkenas#2009).

Instead returning `new Literal` in the grammar, subtypes of it are now returned
instead, such as `NumberLiteral`, `StringLiteral` and `IdentifierLiteral`. `new
Literal` by itself is only used to represent code chunks that fit no category.

`StringWithInterpolations` has been added as a subtype of `Parens`, and
`RegexWithInterpolations` as a subtype of `Call`. This makes it easier for other
programs to make use of CoffeeScript's "AST" (nodes). For example, it is now
possible to distinguish between `"a #{b} c"` and `"a " + b + " c"`. Fixes jashkenas#4192.

Note, though, that some information is still lost, especially in the lexer. For
example, there is no way to distinguish a heredoc from a regular string, or a
heregex without interpolations from a regular regex.

After the new subtypes were added, they were taken advantage of, removing most
regexes in nodes.coffee. `SIMPLENUM` (which matches non-hex integers) had to be
kept, though, because such numbers need special handling in JavaScript (for
example in `1..toString()`).

An especially nice hack to get rid of was using `new String()` for the token
value for reserved identifiers (to be able to set a property on them which could
survive through the parser). Now it's a good old regular string.

In range literals, slices, splices and for loop steps when number literals
are involved, CoffeeScript can do some optimizations, such as precomputing the
value of, say, `5 - 3` (outputting `2` instead of `5 - 3` literally). As a side
bonus, this now also works with hexadecimal number literals, such as `0x02`.

Finally, this also improves the output of `coffee --nodes`:

    # Before:
    $ bin/coffee -ne 'while true
      "#{a}"
      break'
    Block
      While
        Value
          Bool
        Block
          Value
            Parens
              Block
                Op +
                  Value """"
                  Value
                    Parens
                      Block
                        Value "a" "break"

    # After:
    $ bin/coffee -ne 'while true
      "#{a}"
      break'
    Block
      While
        Value Bool: true
        Block
          Value
            StringWithInterpolations
              Block
                Op +
                  Value StringLiteral: ""
                  Value
                    Parens
                      Block
                        Value IdentifierLiteral: a
          StatementLiteral: break
lydell added a commit to lydell/coffee-script that referenced this issue Feb 9, 2016
Previously, the parser created `Literal` nodes for many things. This resulted in
information loss. Instead of being able to check the node type, we had to use
regexes to tell the different types of `Literal`s apart. That was a bit like
parsing literals twice: Once in the lexer, and once (or more) in the compiler.
It also caused problems, such as `` `this` `` and `this` being indistinguishable
(fixes jashkenas#2009).

Instead returning `new Literal` in the grammar, subtypes of it are now returned
instead, such as `NumberLiteral`, `StringLiteral` and `IdentifierLiteral`. `new
Literal` by itself is only used to represent code chunks that fit no category.

`StringWithInterpolations` has been added as a subtype of `Parens`, and
`RegexWithInterpolations` as a subtype of `Call`. This makes it easier for other
programs to make use of CoffeeScript's "AST" (nodes). For example, it is now
possible to distinguish between `"a #{b} c"` and `"a " + b + " c"`. Fixes jashkenas#4192.

`SuperCall` has been added as a subtype of `Call`. However, I didn't manage to
decouple the two, so most of the `super` logic still lives in `Call`.

Note, though, that some information is still lost, especially in the lexer. For
example, there is no way to distinguish a heredoc from a regular string, or a
heregex without interpolations from a regular regex.

After the new subtypes were added, they were taken advantage of, removing most
regexes in nodes.coffee. `SIMPLENUM` (which matches non-hex integers) had to be
kept, though, because such numbers need special handling in JavaScript (for
example in `1..toString()`).

An especially nice hack to get rid of was using `new String()` for the token
value for reserved identifiers (to be able to set a property on them which could
survive through the parser). Now it's a good old regular string.

In range literals, slices, splices and for loop steps when number literals
are involved, CoffeeScript can do some optimizations, such as precomputing the
value of, say, `5 - 3` (outputting `2` instead of `5 - 3` literally). As a side
bonus, this now also works with hexadecimal number literals, such as `0x02`.

Finally, this also improves the output of `coffee --nodes`:

    # Before:
    $ bin/coffee -ne 'while true
      "#{a}"
      break'
    Block
      While
        Value
          Bool
        Block
          Value
            Parens
              Block
                Op +
                  Value """"
                  Value
                    Parens
                      Block
                        Value "a" "break"

    # After:
    $ bin/coffee -ne 'while true
      "#{a}"
      break'
    Block
      While
        Value Bool: true
        Block
          Value
            StringWithInterpolations
              Block
                Op +
                  Value StringLiteral: ""
                  Value
                    Parens
                      Block
                        Value IdentifierLiteral: a
          StatementLiteral: break
lydell added a commit to lydell/coffee-script that referenced this issue Feb 9, 2016
Previously, the parser created `Literal` nodes for many things. This resulted in
information loss. Instead of being able to check the node type, we had to use
regexes to tell the different types of `Literal`s apart. That was a bit like
parsing literals twice: Once in the lexer, and once (or more) in the compiler.
It also caused problems, such as `` `this` `` and `this` being indistinguishable
(fixes jashkenas#2009).

Instead returning `new Literal` in the grammar, subtypes of it are now returned
instead, such as `NumberLiteral`, `StringLiteral` and `IdentifierLiteral`. `new
Literal` by itself is only used to represent code chunks that fit no category.

`StringWithInterpolations` has been added as a subtype of `Parens`, and
`RegexWithInterpolations` as a subtype of `Call`. This makes it easier for other
programs to make use of CoffeeScript's "AST" (nodes). For example, it is now
possible to distinguish between `"a #{b} c"` and `"a " + b + " c"`. Fixes jashkenas#4192.

`SuperCall` has been added as a subtype of `Call`. However, I didn't manage to
decouple the two, so most of the `super` logic still lives in `Call`.

Note, though, that some information is still lost, especially in the lexer. For
example, there is no way to distinguish a heredoc from a regular string, or a
heregex without interpolations from a regular regex.

After the new subtypes were added, they were taken advantage of, removing most
regexes in nodes.coffee. `SIMPLENUM` (which matches non-hex integers) had to be
kept, though, because such numbers need special handling in JavaScript (for
example in `1..toString()`).

An especially nice hack to get rid of was using `new String()` for the token
value for reserved identifiers (to be able to set a property on them which could
survive through the parser). Now it's a good old regular string.

In range literals, slices, splices and for loop steps when number literals
are involved, CoffeeScript can do some optimizations, such as precomputing the
value of, say, `5 - 3` (outputting `2` instead of `5 - 3` literally). As a side
bonus, this now also works with hexadecimal number literals, such as `0x02`.

Finally, this also improves the output of `coffee --nodes`:

    # Before:
    $ bin/coffee -ne 'while true
      "#{a}"
      break'
    Block
      While
        Value
          Bool
        Block
          Value
            Parens
              Block
                Op +
                  Value """"
                  Value
                    Parens
                      Block
                        Value "a" "break"

    # After:
    $ bin/coffee -ne 'while true
      "#{a}"
      break'
    Block
      While
        Value Bool: true
        Block
          Value
            StringWithInterpolations
              Block
                Op +
                  Value StringLiteral: ""
                  Value
                    Parens
                      Block
                        Value IdentifierLiteral: a
          StatementLiteral: break
lydell added a commit to lydell/coffee-script that referenced this issue Feb 9, 2016
Previously, the parser created `Literal` nodes for many things. This resulted in
information loss. Instead of being able to check the node type, we had to use
regexes to tell the different types of `Literal`s apart. That was a bit like
parsing literals twice: Once in the lexer, and once (or more) in the compiler.
It also caused problems, such as `` `this` `` and `this` being indistinguishable
(fixes jashkenas#2009).

Instead returning `new Literal` in the grammar, subtypes of it are now returned
instead, such as `NumberLiteral`, `StringLiteral` and `IdentifierLiteral`. `new
Literal` by itself is only used to represent code chunks that fit no category.

`StringWithInterpolations` has been added as a subtype of `Parens`, and
`RegexWithInterpolations` as a subtype of `Call`. This makes it easier for other
programs to make use of CoffeeScript's "AST" (nodes). For example, it is now
possible to distinguish between `"a #{b} c"` and `"a " + b + " c"`. Fixes jashkenas#4192.

`SuperCall` has been added as a subtype of `Call`.

Note, though, that some information is still lost, especially in the lexer. For
example, there is no way to distinguish a heredoc from a regular string, or a
heregex without interpolations from a regular regex.

After the new subtypes were added, they were taken advantage of, removing most
regexes in nodes.coffee. `SIMPLENUM` (which matches non-hex integers) had to be
kept, though, because such numbers need special handling in JavaScript (for
example in `1..toString()`).

An especially nice hack to get rid of was using `new String()` for the token
value for reserved identifiers (to be able to set a property on them which could
survive through the parser). Now it's a good old regular string.

In range literals, slices, splices and for loop steps when number literals
are involved, CoffeeScript can do some optimizations, such as precomputing the
value of, say, `5 - 3` (outputting `2` instead of `5 - 3` literally). As a side
bonus, this now also works with hexadecimal number literals, such as `0x02`.

Finally, this also improves the output of `coffee --nodes`:

    # Before:
    $ bin/coffee -ne 'while true
      "#{a}"
      break'
    Block
      While
        Value
          Bool
        Block
          Value
            Parens
              Block
                Op +
                  Value """"
                  Value
                    Parens
                      Block
                        Value "a" "break"

    # After:
    $ bin/coffee -ne 'while true
      "#{a}"
      break'
    Block
      While
        Value Bool: true
        Block
          Value
            StringWithInterpolations
              Block
                Op +
                  Value StringLiteral: ""
                  Value
                    Parens
                      Block
                        Value IdentifierLiteral: a
          StatementLiteral: break
lydell added a commit to lydell/coffee-script that referenced this issue Feb 9, 2016
Previously, the parser created `Literal` nodes for many things. This resulted in
information loss. Instead of being able to check the node type, we had to use
regexes to tell the different types of `Literal`s apart. That was a bit like
parsing literals twice: Once in the lexer, and once (or more) in the compiler.
It also caused problems, such as `` `this` `` and `this` being indistinguishable
(fixes jashkenas#2009).

Instead returning `new Literal` in the grammar, subtypes of it are now returned
instead, such as `NumberLiteral`, `StringLiteral` and `IdentifierLiteral`. `new
Literal` by itself is only used to represent code chunks that fit no category.

`StringWithInterpolations` has been added as a subtype of `Parens`, and
`RegexWithInterpolations` as a subtype of `Call`. This makes it easier for other
programs to make use of CoffeeScript's "AST" (nodes). For example, it is now
possible to distinguish between `"a #{b} c"` and `"a " + b + " c"`. Fixes jashkenas#4192.

`SuperCall` has been added as a subtype of `Call`.

Note, though, that some information is still lost, especially in the lexer. For
example, there is no way to distinguish a heredoc from a regular string, or a
heregex without interpolations from a regular regex.

After the new subtypes were added, they were taken advantage of, removing most
regexes in nodes.coffee. `SIMPLENUM` (which matches non-hex integers) had to be
kept, though, because such numbers need special handling in JavaScript (for
example in `1..toString()`).

An especially nice hack to get rid of was using `new String()` for the token
value for reserved identifiers (to be able to set a property on them which could
survive through the parser). Now it's a good old regular string.

In range literals, slices, splices and for loop steps when number literals
are involved, CoffeeScript can do some optimizations, such as precomputing the
value of, say, `5 - 3` (outputting `2` instead of `5 - 3` literally). As a side
bonus, this now also works with hexadecimal number literals, such as `0x02`.

Finally, this also improves the output of `coffee --nodes`:

    # Before:
    $ bin/coffee -ne 'while true
      "#{a}"
      break'
    Block
      While
        Value
          Bool
        Block
          Value
            Parens
              Block
                Op +
                  Value """"
                  Value
                    Parens
                      Block
                        Value "a" "break"

    # After:
    $ bin/coffee -ne 'while true
      "#{a}"
      break'
    Block
      While
        Value BooleanLiteral: true
        Block
          Value
            StringWithInterpolations
              Block
                Op +
                  Value StringLiteral: ""
                  Value
                    Parens
                      Block
                        Value IdentifierLiteral: a
          StatementLiteral: break
lydell added a commit to lydell/coffee-script that referenced this issue Mar 5, 2016
Previously, the parser created `Literal` nodes for many things. This resulted in
information loss. Instead of being able to check the node type, we had to use
regexes to tell the different types of `Literal`s apart. That was a bit like
parsing literals twice: Once in the lexer, and once (or more) in the compiler.
It also caused problems, such as `` `this` `` and `this` being indistinguishable
(fixes jashkenas#2009).

Instead returning `new Literal` in the grammar, subtypes of it are now returned
instead, such as `NumberLiteral`, `StringLiteral` and `IdentifierLiteral`. `new
Literal` by itself is only used to represent code chunks that fit no category.
(While mentioning `NumberLiteral`, there's also `InfinityLiteral` now, which is
a subtype of `NumberLiteral`.)

`StringWithInterpolations` has been added as a subtype of `Parens`, and
`RegexWithInterpolations` as a subtype of `Call`. This makes it easier for other
programs to make use of CoffeeScript's "AST" (nodes). For example, it is now
possible to distinguish between `"a #{b} c"` and `"a " + b + " c"`. Fixes jashkenas#4192.

`SuperCall` has been added as a subtype of `Call`.

Note, though, that some information is still lost, especially in the lexer. For
example, there is no way to distinguish a heredoc from a regular string, or a
heregex without interpolations from a regular regex. Binary and octal number
literals are indistinguishable from hexadecimal literals.

After the new subtypes were added, they were taken advantage of, removing most
regexes in nodes.coffee. `SIMPLENUM` (which matches non-hex integers) had to be
kept, though, because such numbers need special handling in JavaScript (for
example in `1..toString()`).

An especially nice hack to get rid of was using `new String()` for the token
value for reserved identifiers (to be able to set a property on them which could
survive through the parser). Now it's a good old regular string.

In range literals, slices, splices and for loop steps when number literals
are involved, CoffeeScript can do some optimizations, such as precomputing the
value of, say, `5 - 3` (outputting `2` instead of `5 - 3` literally). As a side
bonus, this now also works with hexadecimal number literals, such as `0x02`.

Finally, this also improves the output of `coffee --nodes`:

    # Before:
    $ bin/coffee -ne 'while true
      "#{a}"
      break'
    Block
      While
        Value
          Bool
        Block
          Value
            Parens
              Block
                Op +
                  Value """"
                  Value
                    Parens
                      Block
                        Value "a" "break"

    # After:
    $ bin/coffee -ne 'while true
      "#{a}"
      break'
    Block
      While
        Value BooleanLiteral: true
        Block
          Value
            StringWithInterpolations
              Block
                Op +
                  Value StringLiteral: ""
                  Value
                    Parens
                      Block
                        Value IdentifierLiteral: a
          StatementLiteral: break
lydell added a commit to lydell/coffee-script that referenced this issue Mar 5, 2016
Previously, the parser created `Literal` nodes for many things. This resulted in
information loss. Instead of being able to check the node type, we had to use
regexes to tell the different types of `Literal`s apart. That was a bit like
parsing literals twice: Once in the lexer, and once (or more) in the compiler.
It also caused problems, such as `` `this` `` and `this` being indistinguishable
(fixes jashkenas#2009).

Instead returning `new Literal` in the grammar, subtypes of it are now returned
instead, such as `NumberLiteral`, `StringLiteral` and `IdentifierLiteral`. `new
Literal` by itself is only used to represent code chunks that fit no category.
(While mentioning `NumberLiteral`, there's also `InfinityLiteral` now, which is
a subtype of `NumberLiteral`.)

`StringWithInterpolations` has been added as a subtype of `Parens`, and
`RegexWithInterpolations` as a subtype of `Call`. This makes it easier for other
programs to make use of CoffeeScript's "AST" (nodes). For example, it is now
possible to distinguish between `"a #{b} c"` and `"a " + b + " c"`. Fixes jashkenas#4192.

`SuperCall` has been added as a subtype of `Call`.

Note, though, that some information is still lost, especially in the lexer. For
example, there is no way to distinguish a heredoc from a regular string, or a
heregex without interpolations from a regular regex. Binary and octal number
literals are indistinguishable from hexadecimal literals.

After the new subtypes were added, they were taken advantage of, removing most
regexes in nodes.coffee. `SIMPLENUM` (which matches non-hex integers) had to be
kept, though, because such numbers need special handling in JavaScript (for
example in `1..toString()`).

An especially nice hack to get rid of was using `new String()` for the token
value for reserved identifiers (to be able to set a property on them which could
survive through the parser). Now it's a good old regular string.

In range literals, slices, splices and for loop steps when number literals
are involved, CoffeeScript can do some optimizations, such as precomputing the
value of, say, `5 - 3` (outputting `2` instead of `5 - 3` literally). As a side
bonus, this now also works with hexadecimal number literals, such as `0x02`.

Finally, this also improves the output of `coffee --nodes`:

    # Before:
    $ bin/coffee -ne 'while true
      "#{a}"
      break'
    Block
      While
        Value
          Bool
        Block
          Value
            Parens
              Block
                Op +
                  Value """"
                  Value
                    Parens
                      Block
                        Value "a" "break"

    # After:
    $ bin/coffee -ne 'while true
      "#{a}"
      break'
    Block
      While
        Value BooleanLiteral: true
        Block
          Value
            StringWithInterpolations
              Block
                Op +
                  Value StringLiteral: ""
                  Value
                    Parens
                      Block
                        Value IdentifierLiteral: a
          StatementLiteral: break
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
Projects
None yet
Development

Successfully merging a pull request may close this issue.

7 participants