-
Notifications
You must be signed in to change notification settings - Fork 2k
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Bug with backtick #2009
Comments
This actually seems like a desirable behaviour to me. I know it doesn't insert what was literally inside the backticks, but it does reference the value you would think you'd be referencing when writing it. By that, I mean the bound context, referenced as |
A bare Looks like CoffeeScript creates Whether I'm right or wrong, I agree that backtick behavior should always be to literally insert, since the whole point is to be able to do something CoffeeScript can't or doesn't do. |
An outcome of using
|
Yeah, that's what I figured. |
CoffeScript doesn't assume anything, it only does that when you're using fat-arrow functions.
No. Without the fat-arrow function, it would refer to the jQuery object. @MissileSilo While it is a bug that should be fixed, (ab)using backticks like that to access the "unbound" value of Other than making the code extremely hard to understand (two different values for Just manually define an |
As @shesek said:
I'm not convinced, because we have escaped I find hack: @saveDate ` this` #extra space Now what do you say? Now it's a mess. :D |
I prefer |
Previously, the parser created `Literal` nodes for many things. This resulted in information loss. Instead of being able to check the node type, we had to use regexes to tell the different types of `Literal`s apart. That was a bit like parsing literals twice: Once in the lexer, and once (or more) in the compiler. It also caused problems, such as `` `this` `` and `this` being indistinguishable (fixes jashkenas#2009). Instead returning `new Literal` in the grammar, subtypes of it are now returned instead, such as `NumberLiteral`, `StringLiteral` and `IdentifierLiteral`. `new Literal` by itself is only used to represent code chunks that fit no category. `StringWithInterpolations` has been added as a subtype of `Parens`, and `RegexWithInterpolations` as a subtype of `Call`. This makes it easier for other programs to make use of CoffeeScript's "AST" (nodes). For example, it is now possible to distinguish between `"a #{b} c"` and `"a " + b + " c"`. Fixes jashkenas#4192. Note, though, that some information is still lost, especially in the lexer. For example, there is no way to distinguish a heredoc from a regular string, or a heregex without interpolations from a regular regex. After the new subtypes were added, they were taken advantage of, removing most regexes in nodes.coffee. `SIMPLENUM` (which matches non-hex integers) had to be kept, though, because such numbers need special handling in JavaScript (for example in `1..toString()`). An especially nice hack to get rid of was using `new String()` for the token value for reserved identifiers (to be able to set a property on them which could survive through the parser). Now it's a good old regular string. In range literals, slices, splices and for loop steps when number literals are involved, CoffeeScript can do some optimizations, such as precomputing the value of, say, `5 - 3` (outputting `2` instead of `5 - 3` literally). As a side bonus, this now also works with hexadecimal number literals, such as `0x02`. Finally, this also improves the output of `coffee --nodes`: # Before: $ bin/coffee -ne 'while true "#{a}" break' Block While Value Bool Block Value Parens Block Op + Value """" Value Parens Block Value "a" "break" # After: $ bin/coffee -ne 'while true "#{a}" break' Block While Value Bool: true Block Value StringWithInterpolations Block Op + Value StringLiteral: "" Value Parens Block Value IdentifierLiteral: a StatementLiteral: break
Previously, the parser created `Literal` nodes for many things. This resulted in information loss. Instead of being able to check the node type, we had to use regexes to tell the different types of `Literal`s apart. That was a bit like parsing literals twice: Once in the lexer, and once (or more) in the compiler. It also caused problems, such as `` `this` `` and `this` being indistinguishable (fixes jashkenas#2009). Instead returning `new Literal` in the grammar, subtypes of it are now returned instead, such as `NumberLiteral`, `StringLiteral` and `IdentifierLiteral`. `new Literal` by itself is only used to represent code chunks that fit no category. `StringWithInterpolations` has been added as a subtype of `Parens`, and `RegexWithInterpolations` as a subtype of `Call`. This makes it easier for other programs to make use of CoffeeScript's "AST" (nodes). For example, it is now possible to distinguish between `"a #{b} c"` and `"a " + b + " c"`. Fixes jashkenas#4192. Note, though, that some information is still lost, especially in the lexer. For example, there is no way to distinguish a heredoc from a regular string, or a heregex without interpolations from a regular regex. After the new subtypes were added, they were taken advantage of, removing most regexes in nodes.coffee. `SIMPLENUM` (which matches non-hex integers) had to be kept, though, because such numbers need special handling in JavaScript (for example in `1..toString()`). An especially nice hack to get rid of was using `new String()` for the token value for reserved identifiers (to be able to set a property on them which could survive through the parser). Now it's a good old regular string. In range literals, slices, splices and for loop steps when number literals are involved, CoffeeScript can do some optimizations, such as precomputing the value of, say, `5 - 3` (outputting `2` instead of `5 - 3` literally). As a side bonus, this now also works with hexadecimal number literals, such as `0x02`. Finally, this also improves the output of `coffee --nodes`: # Before: $ bin/coffee -ne 'while true "#{a}" break' Block While Value Bool Block Value Parens Block Op + Value """" Value Parens Block Value "a" "break" # After: $ bin/coffee -ne 'while true "#{a}" break' Block While Value Bool: true Block Value StringWithInterpolations Block Op + Value StringLiteral: "" Value Parens Block Value IdentifierLiteral: a StatementLiteral: break
Previously, the parser created `Literal` nodes for many things. This resulted in information loss. Instead of being able to check the node type, we had to use regexes to tell the different types of `Literal`s apart. That was a bit like parsing literals twice: Once in the lexer, and once (or more) in the compiler. It also caused problems, such as `` `this` `` and `this` being indistinguishable (fixes jashkenas#2009). Instead returning `new Literal` in the grammar, subtypes of it are now returned instead, such as `NumberLiteral`, `StringLiteral` and `IdentifierLiteral`. `new Literal` by itself is only used to represent code chunks that fit no category. `StringWithInterpolations` has been added as a subtype of `Parens`, and `RegexWithInterpolations` as a subtype of `Call`. This makes it easier for other programs to make use of CoffeeScript's "AST" (nodes). For example, it is now possible to distinguish between `"a #{b} c"` and `"a " + b + " c"`. Fixes jashkenas#4192. `SuperCall` has been added as a subtype of `Call`. However, I didn't manage to decouple the two, so most of the `super` logic still lives in `Call`. Note, though, that some information is still lost, especially in the lexer. For example, there is no way to distinguish a heredoc from a regular string, or a heregex without interpolations from a regular regex. After the new subtypes were added, they were taken advantage of, removing most regexes in nodes.coffee. `SIMPLENUM` (which matches non-hex integers) had to be kept, though, because such numbers need special handling in JavaScript (for example in `1..toString()`). An especially nice hack to get rid of was using `new String()` for the token value for reserved identifiers (to be able to set a property on them which could survive through the parser). Now it's a good old regular string. In range literals, slices, splices and for loop steps when number literals are involved, CoffeeScript can do some optimizations, such as precomputing the value of, say, `5 - 3` (outputting `2` instead of `5 - 3` literally). As a side bonus, this now also works with hexadecimal number literals, such as `0x02`. Finally, this also improves the output of `coffee --nodes`: # Before: $ bin/coffee -ne 'while true "#{a}" break' Block While Value Bool Block Value Parens Block Op + Value """" Value Parens Block Value "a" "break" # After: $ bin/coffee -ne 'while true "#{a}" break' Block While Value Bool: true Block Value StringWithInterpolations Block Op + Value StringLiteral: "" Value Parens Block Value IdentifierLiteral: a StatementLiteral: break
Previously, the parser created `Literal` nodes for many things. This resulted in information loss. Instead of being able to check the node type, we had to use regexes to tell the different types of `Literal`s apart. That was a bit like parsing literals twice: Once in the lexer, and once (or more) in the compiler. It also caused problems, such as `` `this` `` and `this` being indistinguishable (fixes jashkenas#2009). Instead returning `new Literal` in the grammar, subtypes of it are now returned instead, such as `NumberLiteral`, `StringLiteral` and `IdentifierLiteral`. `new Literal` by itself is only used to represent code chunks that fit no category. `StringWithInterpolations` has been added as a subtype of `Parens`, and `RegexWithInterpolations` as a subtype of `Call`. This makes it easier for other programs to make use of CoffeeScript's "AST" (nodes). For example, it is now possible to distinguish between `"a #{b} c"` and `"a " + b + " c"`. Fixes jashkenas#4192. `SuperCall` has been added as a subtype of `Call`. However, I didn't manage to decouple the two, so most of the `super` logic still lives in `Call`. Note, though, that some information is still lost, especially in the lexer. For example, there is no way to distinguish a heredoc from a regular string, or a heregex without interpolations from a regular regex. After the new subtypes were added, they were taken advantage of, removing most regexes in nodes.coffee. `SIMPLENUM` (which matches non-hex integers) had to be kept, though, because such numbers need special handling in JavaScript (for example in `1..toString()`). An especially nice hack to get rid of was using `new String()` for the token value for reserved identifiers (to be able to set a property on them which could survive through the parser). Now it's a good old regular string. In range literals, slices, splices and for loop steps when number literals are involved, CoffeeScript can do some optimizations, such as precomputing the value of, say, `5 - 3` (outputting `2` instead of `5 - 3` literally). As a side bonus, this now also works with hexadecimal number literals, such as `0x02`. Finally, this also improves the output of `coffee --nodes`: # Before: $ bin/coffee -ne 'while true "#{a}" break' Block While Value Bool Block Value Parens Block Op + Value """" Value Parens Block Value "a" "break" # After: $ bin/coffee -ne 'while true "#{a}" break' Block While Value Bool: true Block Value StringWithInterpolations Block Op + Value StringLiteral: "" Value Parens Block Value IdentifierLiteral: a StatementLiteral: break
Previously, the parser created `Literal` nodes for many things. This resulted in information loss. Instead of being able to check the node type, we had to use regexes to tell the different types of `Literal`s apart. That was a bit like parsing literals twice: Once in the lexer, and once (or more) in the compiler. It also caused problems, such as `` `this` `` and `this` being indistinguishable (fixes jashkenas#2009). Instead returning `new Literal` in the grammar, subtypes of it are now returned instead, such as `NumberLiteral`, `StringLiteral` and `IdentifierLiteral`. `new Literal` by itself is only used to represent code chunks that fit no category. `StringWithInterpolations` has been added as a subtype of `Parens`, and `RegexWithInterpolations` as a subtype of `Call`. This makes it easier for other programs to make use of CoffeeScript's "AST" (nodes). For example, it is now possible to distinguish between `"a #{b} c"` and `"a " + b + " c"`. Fixes jashkenas#4192. `SuperCall` has been added as a subtype of `Call`. Note, though, that some information is still lost, especially in the lexer. For example, there is no way to distinguish a heredoc from a regular string, or a heregex without interpolations from a regular regex. After the new subtypes were added, they were taken advantage of, removing most regexes in nodes.coffee. `SIMPLENUM` (which matches non-hex integers) had to be kept, though, because such numbers need special handling in JavaScript (for example in `1..toString()`). An especially nice hack to get rid of was using `new String()` for the token value for reserved identifiers (to be able to set a property on them which could survive through the parser). Now it's a good old regular string. In range literals, slices, splices and for loop steps when number literals are involved, CoffeeScript can do some optimizations, such as precomputing the value of, say, `5 - 3` (outputting `2` instead of `5 - 3` literally). As a side bonus, this now also works with hexadecimal number literals, such as `0x02`. Finally, this also improves the output of `coffee --nodes`: # Before: $ bin/coffee -ne 'while true "#{a}" break' Block While Value Bool Block Value Parens Block Op + Value """" Value Parens Block Value "a" "break" # After: $ bin/coffee -ne 'while true "#{a}" break' Block While Value Bool: true Block Value StringWithInterpolations Block Op + Value StringLiteral: "" Value Parens Block Value IdentifierLiteral: a StatementLiteral: break
Previously, the parser created `Literal` nodes for many things. This resulted in information loss. Instead of being able to check the node type, we had to use regexes to tell the different types of `Literal`s apart. That was a bit like parsing literals twice: Once in the lexer, and once (or more) in the compiler. It also caused problems, such as `` `this` `` and `this` being indistinguishable (fixes jashkenas#2009). Instead returning `new Literal` in the grammar, subtypes of it are now returned instead, such as `NumberLiteral`, `StringLiteral` and `IdentifierLiteral`. `new Literal` by itself is only used to represent code chunks that fit no category. `StringWithInterpolations` has been added as a subtype of `Parens`, and `RegexWithInterpolations` as a subtype of `Call`. This makes it easier for other programs to make use of CoffeeScript's "AST" (nodes). For example, it is now possible to distinguish between `"a #{b} c"` and `"a " + b + " c"`. Fixes jashkenas#4192. `SuperCall` has been added as a subtype of `Call`. Note, though, that some information is still lost, especially in the lexer. For example, there is no way to distinguish a heredoc from a regular string, or a heregex without interpolations from a regular regex. After the new subtypes were added, they were taken advantage of, removing most regexes in nodes.coffee. `SIMPLENUM` (which matches non-hex integers) had to be kept, though, because such numbers need special handling in JavaScript (for example in `1..toString()`). An especially nice hack to get rid of was using `new String()` for the token value for reserved identifiers (to be able to set a property on them which could survive through the parser). Now it's a good old regular string. In range literals, slices, splices and for loop steps when number literals are involved, CoffeeScript can do some optimizations, such as precomputing the value of, say, `5 - 3` (outputting `2` instead of `5 - 3` literally). As a side bonus, this now also works with hexadecimal number literals, such as `0x02`. Finally, this also improves the output of `coffee --nodes`: # Before: $ bin/coffee -ne 'while true "#{a}" break' Block While Value Bool Block Value Parens Block Op + Value """" Value Parens Block Value "a" "break" # After: $ bin/coffee -ne 'while true "#{a}" break' Block While Value BooleanLiteral: true Block Value StringWithInterpolations Block Op + Value StringLiteral: "" Value Parens Block Value IdentifierLiteral: a StatementLiteral: break
Previously, the parser created `Literal` nodes for many things. This resulted in information loss. Instead of being able to check the node type, we had to use regexes to tell the different types of `Literal`s apart. That was a bit like parsing literals twice: Once in the lexer, and once (or more) in the compiler. It also caused problems, such as `` `this` `` and `this` being indistinguishable (fixes jashkenas#2009). Instead returning `new Literal` in the grammar, subtypes of it are now returned instead, such as `NumberLiteral`, `StringLiteral` and `IdentifierLiteral`. `new Literal` by itself is only used to represent code chunks that fit no category. (While mentioning `NumberLiteral`, there's also `InfinityLiteral` now, which is a subtype of `NumberLiteral`.) `StringWithInterpolations` has been added as a subtype of `Parens`, and `RegexWithInterpolations` as a subtype of `Call`. This makes it easier for other programs to make use of CoffeeScript's "AST" (nodes). For example, it is now possible to distinguish between `"a #{b} c"` and `"a " + b + " c"`. Fixes jashkenas#4192. `SuperCall` has been added as a subtype of `Call`. Note, though, that some information is still lost, especially in the lexer. For example, there is no way to distinguish a heredoc from a regular string, or a heregex without interpolations from a regular regex. Binary and octal number literals are indistinguishable from hexadecimal literals. After the new subtypes were added, they were taken advantage of, removing most regexes in nodes.coffee. `SIMPLENUM` (which matches non-hex integers) had to be kept, though, because such numbers need special handling in JavaScript (for example in `1..toString()`). An especially nice hack to get rid of was using `new String()` for the token value for reserved identifiers (to be able to set a property on them which could survive through the parser). Now it's a good old regular string. In range literals, slices, splices and for loop steps when number literals are involved, CoffeeScript can do some optimizations, such as precomputing the value of, say, `5 - 3` (outputting `2` instead of `5 - 3` literally). As a side bonus, this now also works with hexadecimal number literals, such as `0x02`. Finally, this also improves the output of `coffee --nodes`: # Before: $ bin/coffee -ne 'while true "#{a}" break' Block While Value Bool Block Value Parens Block Op + Value """" Value Parens Block Value "a" "break" # After: $ bin/coffee -ne 'while true "#{a}" break' Block While Value BooleanLiteral: true Block Value StringWithInterpolations Block Op + Value StringLiteral: "" Value Parens Block Value IdentifierLiteral: a StatementLiteral: break
Previously, the parser created `Literal` nodes for many things. This resulted in information loss. Instead of being able to check the node type, we had to use regexes to tell the different types of `Literal`s apart. That was a bit like parsing literals twice: Once in the lexer, and once (or more) in the compiler. It also caused problems, such as `` `this` `` and `this` being indistinguishable (fixes jashkenas#2009). Instead returning `new Literal` in the grammar, subtypes of it are now returned instead, such as `NumberLiteral`, `StringLiteral` and `IdentifierLiteral`. `new Literal` by itself is only used to represent code chunks that fit no category. (While mentioning `NumberLiteral`, there's also `InfinityLiteral` now, which is a subtype of `NumberLiteral`.) `StringWithInterpolations` has been added as a subtype of `Parens`, and `RegexWithInterpolations` as a subtype of `Call`. This makes it easier for other programs to make use of CoffeeScript's "AST" (nodes). For example, it is now possible to distinguish between `"a #{b} c"` and `"a " + b + " c"`. Fixes jashkenas#4192. `SuperCall` has been added as a subtype of `Call`. Note, though, that some information is still lost, especially in the lexer. For example, there is no way to distinguish a heredoc from a regular string, or a heregex without interpolations from a regular regex. Binary and octal number literals are indistinguishable from hexadecimal literals. After the new subtypes were added, they were taken advantage of, removing most regexes in nodes.coffee. `SIMPLENUM` (which matches non-hex integers) had to be kept, though, because such numbers need special handling in JavaScript (for example in `1..toString()`). An especially nice hack to get rid of was using `new String()` for the token value for reserved identifiers (to be able to set a property on them which could survive through the parser). Now it's a good old regular string. In range literals, slices, splices and for loop steps when number literals are involved, CoffeeScript can do some optimizations, such as precomputing the value of, say, `5 - 3` (outputting `2` instead of `5 - 3` literally). As a side bonus, this now also works with hexadecimal number literals, such as `0x02`. Finally, this also improves the output of `coffee --nodes`: # Before: $ bin/coffee -ne 'while true "#{a}" break' Block While Value Bool Block Value Parens Block Op + Value """" Value Parens Block Value "a" "break" # After: $ bin/coffee -ne 'while true "#{a}" break' Block While Value BooleanLiteral: true Block Value StringWithInterpolations Block Op + Value StringLiteral: "" Value Parens Block Value IdentifierLiteral: a StatementLiteral: break
Consider this code:
After running coffee -c -b on this file, the following javascript is generated:
Notice that what was in backticks incorrectly replaced. "this" was replaced with "_this"
A workaround is to put a space after the backtick:
this
instead ofthis
But it seems like this is a bug that needs to be fixed.
The text was updated successfully, but these errors were encountered: