Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

feat: dataframe_serializer supports batching #293

Merged
merged 2 commits into from
Jul 29, 2021
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions CHANGELOG.md
Original file line number Diff line number Diff line change
Expand Up @@ -2,6 +2,7 @@

### Features
1. [#281](https://github.com/influxdata/influxdb-client-python/pull/281): `FluxTable`, `FluxColumn` and `FluxRecord` objects have helpful reprs
1. [#293](https://github.com/influxdata/influxdb-client-python/pull/293): `dataframe_serializer` supports batching

### Bug Fixes
1. [#283](https://github.com/influxdata/influxdb-client-python/pull/283): Set proxy server in config file
Expand Down
1 change: 1 addition & 0 deletions examples/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -4,6 +4,7 @@
- [import_data_set.py](import_data_set.py) - How to import CSV file
- [import_data_set_multiprocessing.py](import_data_set_multiprocessing.py) - How to large CSV file by Python Multiprocessing
- [ingest_dataframe_default_tags.py](ingest_dataframe_default_tags.py) - How to ingest DataFrame with default tags
- [ingest_large_dataframe.py](ingest_large_dataframe.py) - How to ingest large DataFrame
- [iot_sensor.py](iot_sensor.py) - How to write sensor data every minute by [RxPY](https://rxpy.readthedocs.io/en/latest/)
- [import_data_set_sync_batching.py](import_data_set_sync_batching.py) - How to use [RxPY](https://rxpy.readthedocs.io/en/latest/) to prepare batches for synchronous write into InfluxDB

Expand Down
69 changes: 69 additions & 0 deletions examples/ingest_large_dataframe.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,69 @@
"""
How to ingest large DataFrame by splitting into chunks.
"""
import logging
import random
from datetime import datetime

from influxdb_client import InfluxDBClient
from influxdb_client.extras import pd, np

"""
Enable logging for DataFrame serializer
"""
loggerSerializer = logging.getLogger('influxdb_client.client.write.dataframe_serializer')
loggerSerializer.setLevel(level=logging.DEBUG)
handler = logging.StreamHandler()
handler.setFormatter(logging.Formatter('%(asctime)s | %(message)s'))
loggerSerializer.addHandler(handler)

"""
Configuration
"""
url = 'http://localhost:8086'
token = 'my-token'
org = 'my-org'
bucket = 'my-bucket'

"""
Generate Dataframe
"""
print()
print("=== Generating DataFrame ===")
print()
dataframe_rows_count = 150_000

col_data = {
'time': np.arange(0, dataframe_rows_count, 1, dtype=int),
'tag': np.random.choice(['tag_a', 'tag_b', 'test_c'], size=(dataframe_rows_count,)),
}
for n in range(2, 2999):
col_data[f'col{n}'] = random.randint(1, 10)

data_frame = pd.DataFrame(data=col_data).set_index('time')
print(data_frame)

"""
Ingest DataFrame
"""
print()
print("=== Ingesting DataFrame via batching API ===")
print()
startTime = datetime.now()

with InfluxDBClient(url=url, token=token, org=org) as client:

"""
Use batching API
"""
with client.write_api() as write_api:
write_api.write(bucket=bucket, record=data_frame,
data_frame_tag_columns=['tag'],
data_frame_measurement_name="measurement_name")
print()
print("Wait to finishing ingesting DataFrame...")
print()

print()
print(f'Import finished in: {datetime.now() - startTime}')
print()
Loading