-
Notifications
You must be signed in to change notification settings - Fork 54
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Browse files
Browse the repository at this point in the history
* feat: added yul math coverage solidity example contract (#511) Signed-off-by: Logan Nguyen <[email protected]> * update: added empty line Signed-off-by: Logan Nguyen <[email protected]> --------- Signed-off-by: Logan Nguyen <[email protected]>
- Loading branch information
1 parent
d86bd90
commit e7dd7b7
Showing
2 changed files
with
259 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,118 @@ | ||
// SPDX-License-Identifier: UNLICENSED | ||
pragma solidity ^0.8.20; | ||
|
||
contract MathCoverage { | ||
|
||
/// addition | ||
function add(int256 x, int256 y) external pure returns (int256 result){ | ||
assembly { | ||
result := add(x, y) | ||
} | ||
} | ||
|
||
/// subtraction | ||
function sub(int256 x, int256 y) external pure returns (int256 result) { | ||
assembly { | ||
result := sub(x, y) | ||
} | ||
} | ||
|
||
/// multiply | ||
function mul(int256 x, int256 y) external pure returns (int256 result) { | ||
assembly { | ||
result := mul(x, y) | ||
} | ||
} | ||
|
||
/// division - x / y or 0 if y == 0 | ||
function div(uint256 x, uint256 y) external pure returns (uint256 result) { | ||
assembly { | ||
result := div(x, y) | ||
} | ||
} | ||
|
||
/// signed division - x / y, for signed numbers in two’s complement, 0 if y == 0 | ||
function sdiv(int256 x, int256 y) external pure returns (int256 result) { | ||
assembly { | ||
result := sdiv(x, y) | ||
} | ||
} | ||
|
||
/// modulous - x % y, 0 if y == 0 | ||
function mod(uint256 x, uint256 y) external pure returns (uint256 result) { | ||
assembly { | ||
result := mod(x, y) | ||
} | ||
} | ||
|
||
/// signed modulous - x % y, for signed numbers in two’s complement, 0 if y == 0 | ||
function smod(int256 x, int256 y) external pure returns (int256 result) { | ||
assembly { | ||
result := smod(x, y) | ||
} | ||
} | ||
|
||
/// exponent - x to the power of y | ||
function exp(int256 x, int256 y) external pure returns (int256 result) { | ||
assembly { | ||
result := exp(x, y) | ||
} | ||
} | ||
|
||
/// less than - 1 if x < y, 0 otherwise | ||
function lt(uint256 x, uint256 y) external pure returns (uint256 result) { | ||
assembly { | ||
result := lt(x, y) | ||
} | ||
} | ||
|
||
/// greater than - 1 if x > y, 0 otherwise | ||
function gt(uint256 x, uint256 y) external pure returns (uint256 result) { | ||
assembly { | ||
result := gt(x, y) | ||
} | ||
} | ||
|
||
/// signed less than - 1 if x < y, 0 otherwise, for signed numbers in two’s complement | ||
function slt(int256 x, int256 y) external pure returns (int256 result) { | ||
assembly { | ||
result := slt(x, y) | ||
} | ||
} | ||
|
||
/// signed greater than - 1 if x > y, 0 otherwise, for signed numbers in two’s complement | ||
function sgt(int256 x, int256 y) external pure returns (int256 result) { | ||
assembly { | ||
result := sgt(x, y) | ||
} | ||
} | ||
|
||
/// equal - 1 if x == y, 0 otherwise | ||
function eq(int256 x, int256 y) external pure returns (int256 result) { | ||
assembly { | ||
result := eq(x, y) | ||
} | ||
} | ||
|
||
/// is zero - 1 if x == 0, 0 otherwise | ||
function iszero(int256 x) external pure returns (int256 result) { | ||
assembly { | ||
result := iszero(x) | ||
} | ||
} | ||
|
||
/// add modulous - (x + y) % m with arbitrary precision arithmetic, 0 if m == 0 | ||
function addMod(int256 x, int256 y, int256 m) external pure returns (int256 result) { | ||
assembly { | ||
result := addmod(x, y, m) | ||
} | ||
} | ||
|
||
/// multiply modulous - (x * y) % m with arbitrary precision arithmetic, 0 if m == 0 | ||
function mulMod(int256 x, int256 y, int256 m) external pure returns (int256 result) { | ||
assembly { | ||
result := mulmod(x, y, m) | ||
} | ||
} | ||
} | ||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,141 @@ | ||
/*- | ||
* | ||
* Hedera Smart Contracts | ||
* | ||
* Copyright (C) 2023 Hedera Hashgraph, LLC | ||
* | ||
* Licensed under the Apache License, Version 2.0 (the "License"); | ||
* you may not use this file except in compliance with the License. | ||
* You may obtain a copy of the License at | ||
* | ||
* http://www.apache.org/licenses/LICENSE-2.0 | ||
* | ||
* Unless required by applicable law or agreed to in writing, software | ||
* distributed under the License is distributed on an "AS IS" BASIS, | ||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
* See the License for the specific language governing permissions and | ||
* limitations under the License. | ||
* | ||
*/ | ||
|
||
const { expect } = require('chai') | ||
const { ethers } = require('hardhat') | ||
|
||
describe('solidityequiv5 Math coverage tests', () => { | ||
let mathCoverageContract | ||
const X = 6 | ||
const SX = -6 | ||
const Y = 3 | ||
const SY = -3 | ||
const M = 2 | ||
|
||
before(async () => { | ||
const mathConverageContractFactory = await ethers.getContractFactory( | ||
'MathCoverage' | ||
) | ||
|
||
mathCoverageContract = await mathConverageContractFactory.deploy() | ||
}) | ||
|
||
it('Should execute add(x, y)', async () => { | ||
const result = await mathCoverageContract.add(X, Y) | ||
|
||
expect(result).to.eq(X + Y) | ||
}) | ||
|
||
it('Should execute sub(x, y)', async () => { | ||
const result = await mathCoverageContract.sub(X, Y) | ||
|
||
expect(result).to.eq(X - Y) | ||
}) | ||
|
||
it('Should execute mul(x, y)', async () => { | ||
const result = await mathCoverageContract.mul(X, Y) | ||
|
||
expect(result).to.eq(X * Y) | ||
}) | ||
|
||
it('Should execute div(x, y)', async () => { | ||
const result = await mathCoverageContract.div(X, Y) | ||
const zeroResult = await mathCoverageContract.div(X, 0) | ||
|
||
expect(result).to.eq(X / Y) | ||
expect(zeroResult).to.eq(0) | ||
}) | ||
|
||
it('Should execute sdiv(x, y)', async () => { | ||
const result = await mathCoverageContract.sdiv(SX, SY) | ||
const zeroResult = await mathCoverageContract.sdiv(SX, 0) | ||
|
||
expect(result).to.eq(SX / SY) | ||
expect(zeroResult).to.eq(0) | ||
}) | ||
|
||
it('Should execute mod(x, y)', async () => { | ||
const result = await mathCoverageContract.mod(X, Y) | ||
|
||
expect(result).to.eq(X % Y) | ||
}) | ||
|
||
it('Should execute smod(x, y)', async () => { | ||
const result = await mathCoverageContract.smod(SX, SY) | ||
|
||
expect(result).to.eq(SX % SY) | ||
}) | ||
|
||
it('Should execute exp(x, y)', async () => { | ||
const result = await mathCoverageContract.exp(X, Y) | ||
|
||
expect(result).to.eq(X ** Y) | ||
}) | ||
|
||
it('Should execute lt(x, y)', async () => { | ||
const result = await mathCoverageContract.lt(X, Y) | ||
|
||
expect(result).to.eq(X < Y ? 1 : 0) | ||
}) | ||
|
||
it('Should execute gt(x, y)', async () => { | ||
const result = await mathCoverageContract.gt(X, Y) | ||
|
||
expect(result).to.eq(X > Y ? 1 : 0) | ||
}) | ||
|
||
it('Should execute slt(x, y)', async () => { | ||
const result = await mathCoverageContract.slt(SX, SY) | ||
|
||
expect(result).to.eq(SX < SY ? 1 : 0) | ||
}) | ||
|
||
it('Should execute sgt(x, y)', async () => { | ||
const result = await mathCoverageContract.sgt(SX, SY) | ||
|
||
expect(result).to.eq(SX > SY ? 1 : 0) | ||
}) | ||
|
||
it('Should execute eq(x, y)', async () => { | ||
const truthResult = await mathCoverageContract.eq(X, X) | ||
const falsyResult = await mathCoverageContract.eq(X, Y) | ||
|
||
expect(truthResult).to.eq(1) | ||
expect(falsyResult).to.eq(X === Y ? 1 : 0) | ||
}) | ||
|
||
it('Should execute iszero(x, y)', async () => { | ||
const result = await mathCoverageContract.iszero(X) | ||
|
||
expect(result).to.eq(result === 0 ? 1 : 0) | ||
}) | ||
|
||
it('Should execute addMod(x, y)', async () => { | ||
const result = await mathCoverageContract.addMod(X, Y, M) | ||
|
||
expect(result).to.eq((X + Y) % M) | ||
}) | ||
|
||
it('Should execute mulMod(x, y)', async () => { | ||
const result = await mathCoverageContract.mulMod(X, Y, M) | ||
|
||
expect(result).to.eq((X * Y) % M) | ||
}) | ||
}) |