Skip to content

Commit

Permalink
Update RGBDS master documentation
Browse files Browse the repository at this point in the history
  • Loading branch information
GitHub Action committed Dec 4, 2024
1 parent 5f94a5a commit ca902c4
Show file tree
Hide file tree
Showing 10 changed files with 34 additions and 34 deletions.
Binary file modified docs/gbz80.7.pdf
Binary file not shown.
Binary file modified docs/rgbasm.1.pdf
Binary file not shown.
68 changes: 34 additions & 34 deletions docs/rgbasm.5.html
Original file line number Diff line number Diff line change
Expand Up @@ -341,70 +341,70 @@ <h3 class="Ss" id="Numeric_formats"><a class="permalink" href="#Numeric_formats"
</section>
<section class="Ss">
<h3 class="Ss" id="Operators"><a class="permalink" href="#Operators">Operators</a></h3>
<p class="Pp">A great number of operators you can use in expressions are
available (listed from highest to lowest precedence):</p>
<p class="Pp">You can use these operators in numeric expressions (listed from
highest to lowest precedence):</p>
<table class="Bl-column Bd-indent">
<tr id="Operator">
<td><a class="permalink" href="#Operator"><b class="Sy">Operator</b></a></td>
<td><a class="permalink" href="#Meaning~2"><b class="Sy" id="Meaning~2">Meaning</b></a></td>
</tr>
<tr id="(">
<td><a class="permalink" href="#("><code class="Li">( )</code></a></td>
<td>Precedence override</td>
<td>Grouping</td>
</tr>
<tr id="FUNC()">
<td><a class="permalink" href="#FUNC()"><code class="Li">FUNC()</code></a></td>
<td>Built-in function call</td>
</tr>
<tr id="**">
<td><a class="permalink" href="#**"><code class="Li">**</code></a></td>
<td>Exponent</td>
<td>Exponentiation</td>
</tr>
<tr id="_~2">
<td><a class="permalink" href="#_~2"><code class="Li">~ + -</code></a></td>
<td>Unary complement/plus/minus</td>
<tr id="+">
<td><a class="permalink" href="#+"><code class="Li">+ - ~ !</code></a></td>
<td>Unary plus, minus (negation), complement (bitwise negation), and Boolean
negation</td>
</tr>
<tr id="*">
<td><a class="permalink" href="#*"><code class="Li">* / %</code></a></td>
<td>Multiply/divide/modulo</td>
<td>Multiplication, division, and modulo (remainder)</td>
</tr>
<tr id="__">
<td><a class="permalink" href="#__"><code class="Li">&lt;&lt;</code></a></td>
<td>Shift left</td>
</tr>
<tr id="__~2">
<td><a class="permalink" href="#__~2"><code class="Li">&gt;&gt;</code></a></td>
<td>Signed shift right (sign-extension)</td>
</tr>
<tr id="___">
<td><a class="permalink" href="#___"><code class="Li">&gt;&gt;&gt;</code></a></td>
<td>Unsigned shift right (zero-extension)</td>
<td><a class="permalink" href="#__"><code class="Li">&lt;&lt; &gt;&gt;
&gt;&gt;&gt;</code></a></td>
<td>Bit shifts (left, sign-extended right, zero-extended right)</td>
</tr>
<tr>
<td><code class="Li">&amp; | ^</code></td>
<td>Binary and/or/xor</td>
<td>Bitwise AND/OR/XOR</td>
</tr>
<tr id="+">
<td><a class="permalink" href="#+"><code class="Li">+ -</code></a></td>
<td>Add/subtract</td>
<tr id="+~2">
<td><a class="permalink" href="#+~2"><code class="Li">+ -</code></a></td>
<td>Addition and subtraction</td>
</tr>
<tr id="!=">
<td><a class="permalink" href="#!="><code class="Li">!= == &lt;= &gt;= &lt;
&gt;</code></a></td>
<td>Comparison</td>
<tr id="==">
<td><a class="permalink" href="#=="><code class="Li">== != &lt; &gt; &lt;=
&gt;=</code></a></td>
<td>Comparisons</td>
</tr>
<tr id="&amp;&amp;">
<td><a class="permalink" href="#&amp;&amp;"><code class="Li">&amp;&amp;
||</code></a></td>
<td>Boolean and/or</td>
<td><a class="permalink" href="#&amp;&amp;"><code class="Li">&amp;&amp;</code></a></td>
<td>Boolean AND</td>
</tr>
<tr id="!">
<td><a class="permalink" href="#!"><code class="Li">!</code></a></td>
<td>Unary not</td>
<tr id="__~2">
<td><a class="permalink" href="#__~2"><code class="Li">||</code></a></td>
<td>Boolean OR</td>
</tr>
</table>
<p class="Pp">&#x2018;~&#x2019; complements a value by inverting all its
bits.</p>
<p class="Pp" id="right-associative">&#x2018;**&#x2019; raises a number to a
non-negative power. It is the only
<a class="permalink" href="#right-associative"><i class="Em">right-associative</i></a>
operator, meaning that &#x2018;<code class="Li">p ** q ** r</code>&#x2019;
is equal to &#x2018;<code class="Li">p ** (q ** r)</code>&#x2019;, not
&#x2018;<code class="Li">(p ** q) ** r</code>&#x2019;. All other binary
operators are left-associative.</p>
<p class="Pp">&#x2018;~&#x2019; complements a value by inverting all 32 of its
bits.</p>
<p class="Pp">&#x2018;%&#x2019; is used to get the remainder of the
corresponding division, so that &#x2018;<code class="Li">x / y * y + x % y
== x</code>&#x2019; is always true. The result has the same sign as the
Expand Down
Binary file modified docs/rgbasm.5.pdf
Binary file not shown.
Binary file modified docs/rgbds.5.pdf
Binary file not shown.
Binary file modified docs/rgbds.7.pdf
Binary file not shown.
Binary file modified docs/rgbfix.1.pdf
Binary file not shown.
Binary file modified docs/rgbgfx.1.pdf
Binary file not shown.
Binary file modified docs/rgblink.1.pdf
Binary file not shown.
Binary file modified docs/rgblink.5.pdf
Binary file not shown.

0 comments on commit ca902c4

Please sign in to comment.