Skip to content

Julia wrapper for the HiGHS solver

License

Notifications You must be signed in to change notification settings

galabovaa/HiGHS.jl

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

61 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

While HiGHS is ready to use today, you should be aware that it is still under active development. That means it might be slow or unstable on some problems. However, by reporting these problems you can help make HiGHS better!

To report a problem (e.g., incorrect results, or a crash of the solver), or make a suggestion for how to improve HiGHS, please file a GitHub issue.

If you use HiGHS from JuMP, use JuMP.write_to_file(model, "filename.mps") to write your model an MPS file, then upload the MPS file to https://gist.github.com and provide a link to the gist in the GitHub issue.

HiGHS.jl

Build Status codecov

HiGHS.jl is a wrapper for the HiGHS linear solver.

It has two components:

The C API can be accessed via HiGHS.Highs_xxx functions, where the names and arguments are identical to the C API.

Installation

Minimum version requirement: HiGHS.jl requres at least Julia v1.3.

Install HiGHS as follows:

import Pkg
Pkg.add("HiGHS")

In addition to installing the HiGHS.jl package, this will also download and install the HiGHS binaries. (You do not need to install HiGHS separately.)

Use with JuMP

Pass HiGHS.Optimizer to JuMP.Model to create a JuMP model with HiGHS as the optimizer. Set options using set_optimizer_attribute.

using JuMP
import HiGHS
model = Model(HiGHS.Optimizer)
set_optimizer_attribute(model, "presolve", "on")
set_optimizer_attribute(model, "time_limit", 60.0)

Options

To print the list of options supported by HiGHS, do:

using HiGHS
model = HiGHS.Optimizer()
Highs_writeOptions(model, "options.txt")
println(read("options.txt", String))

The current option list is:

# Presolve option: "off", "choose" or "on"
# [type: string, advanced: false, default: "choose"]
presolve = choose

# Solver option: "simplex", "choose" or "ipm"
# [type: string, advanced: false, default: "choose"]
solver = choose

# Parallel option: "off", "choose" or "on"
# [type: string, advanced: false, default: "choose"]
parallel = choose

# Time limit
# [type: double, advanced: false, range: [0, inf], default: inf]
time_limit = inf

# Limit on cost coefficient: values larger than this will be treated as infinite
# [type: double, advanced: false, range: [1e+15, inf], default: 1e+20]
infinite_cost = 1e+20

# Limit on |constraint bound|: values larger than this will be treated as infinite
# [type: double, advanced: false, range: [1e+15, inf], default: 1e+20]
infinite_bound = 1e+20

# Lower limit on |matrix entries|: values smaller than this will be treated as zero
# [type: double, advanced: false, range: [1e-12, inf], default: 1e-09]
small_matrix_value = 1e-09

# Upper limit on |matrix entries|: values larger than this will be treated as infinite
# [type: double, advanced: false, range: [1, inf], default: 1e+15]
large_matrix_value = 1e+15

# Primal feasibility tolerance
# [type: double, advanced: false, range: [1e-10, inf], default: 1e-07]
primal_feasibility_tolerance = 1e-07

# Dual feasibility tolerance
# [type: double, advanced: false, range: [1e-10, inf], default: 1e-07]
dual_feasibility_tolerance = 1e-07

# IPM optimality tolerance
# [type: double, advanced: false, range: [1e-12, inf], default: 1e-08]
ipm_optimality_tolerance = 1e-08

# Objective bound for termination
# [type: double, advanced: false, range: [-inf, inf], default: inf]
objective_bound = inf

# Objective target for termination
# [type: double, advanced: false, range: [-inf, inf], default: -inf]
objective_target = -inf

# random seed used in HiGHS
# [type: HighsInt, advanced: false, range: {0, 2147483647}, default: 0]
highs_random_seed = 0

# Debugging level in HiGHS
# [type: HighsInt, advanced: false, range: {0, 3}, default: 0]
highs_debug_level = 0

# Analysis level in HiGHS
# [type: HighsInt, advanced: false, range: {0, 31}, default: 0]
highs_analysis_level = 0

# Strategy for simplex solver
# [type: HighsInt, advanced: false, range: {0, 4}, default: 1]
simplex_strategy = 1

# Strategy for scaling before simplex solver: off / on (0/1)
# [type: HighsInt, advanced: false, range: {0, 4}, default: 2]
simplex_scale_strategy = 2

# Strategy for simplex crash: off / LTSSF / Bixby (0/1/2)
# [type: HighsInt, advanced: false, range: {0, 9}, default: 0]
simplex_crash_strategy = 0

# Strategy for simplex dual edge weights: Choose / Dantzig / Devex / Steepest Edge (-1/0/1/2)
# [type: HighsInt, advanced: false, range: {-1, 3}, default: -1]
simplex_dual_edge_weight_strategy = -1

# Strategy for simplex primal edge weights: Choose / Dantzig / Devex (-1/0/1)
# [type: HighsInt, advanced: false, range: {-1, 1}, default: -1]
simplex_primal_edge_weight_strategy = -1

# Iteration limit for simplex solver
# [type: HighsInt, advanced: false, range: {0, 2147483647}, default: 2147483647]
simplex_iteration_limit = 2147483647

# Limit on the number of simplex UPDATE operations
# [type: HighsInt, advanced: false, range: {0, 2147483647}, default: 5000]
simplex_update_limit = 5000

# Iteration limit for IPM solver
# [type: HighsInt, advanced: false, range: {0, 2147483647}, default: 2147483647]
ipm_iteration_limit = 2147483647

# Minimum number of threads in parallel execution
# [type: HighsInt, advanced: false, range: {1, 8}, default: 1]
highs_min_threads = 1

# Maximum number of threads in parallel execution
# [type: HighsInt, advanced: false, range: {1, 8}, default: 8]
highs_max_threads = 8

# Enables or disables solver output
# [type: bool, advanced: false, range: {false, true}, default: true]
output_flag = true

# Enables or disables console logging
# [type: bool, advanced: false, range: {false, true}, default: true]
log_to_console = true

# Solution file
# [type: string, advanced: false, default: ""]
solution_file = 

# Log file
# [type: string, advanced: false, default: "Highs.log"]
log_file = Highs.log

# Write the primal and dual solution to a file
# [type: bool, advanced: false, range: {false, true}, default: false]
write_solution_to_file = false

# Write the primal and dual solution in a pretty (human-readable) format
# [type: bool, advanced: false, range: {false, true}, default: false]
write_solution_pretty = false

# Whether symmetry should be detected
# [type: bool, advanced: false, range: {false, true}, default: true]
mip_detect_symmetry = true

# MIP solver max number of nodes
# [type: HighsInt, advanced: false, range: {0, 2147483647}, default: 2147483647]
mip_max_nodes = 2147483647

# MIP solver max number of nodes where estimate is above cutoff bound
# [type: HighsInt, advanced: false, range: {0, 2147483647}, default: 2147483647]
mip_max_stall_nodes = 2147483647

# MIP solver max number of leave nodes
# [type: HighsInt, advanced: false, range: {0, 2147483647}, default: 2147483647]
mip_max_leaves = 2147483647

# maximal age of dynamic LP rows before they are removed from the LP relaxation
# [type: HighsInt, advanced: false, range: {0, 32767}, default: 10]
mip_lp_age_limit = 10

# maximal age of rows in the cutpool before they are deleted
# [type: HighsInt, advanced: false, range: {0, 1000}, default: 30]
mip_pool_age_limit = 30

# soft limit on the number of rows in the cutpool for dynamic age adjustment
# [type: HighsInt, advanced: false, range: {1, 2147483647}, default: 10000]
mip_pool_soft_limit = 10000

# minimal number of observations before pseudo costs are considered reliable
# [type: HighsInt, advanced: false, range: {0, 2147483647}, default: 8]
mip_pscost_minreliable = 8

# MIP solver reporting level
# [type: HighsInt, advanced: false, range: {0, 2}, default: 1]
mip_report_level = 1

# MIP feasibility tolerance
# [type: double, advanced: false, range: [1e-10, inf], default: 1e-06]
mip_feasibility_tolerance = 1e-06

# MIP epsilon tolerance
# [type: double, advanced: false, range: [1e-15, inf], default: 1e-09]
mip_epsilon = 1e-09

# effort spent for MIP heuristics
# [type: double, advanced: false, range: [0, 1], default: 0.05]
mip_heuristic_effort = 0.05

# Output development messages: 0 => none; 1 => info; 2 => verbose
# [type: HighsInt, advanced: true, range: {0, 3}, default: 0]
log_dev_level = 0

# Run the crossover routine for IPX
# [type: bool, advanced: true, range: {false, true}, default: true]
run_crossover = true

# Allow ModelStatus::kUnboundedOrInfeasible
# [type: bool, advanced: true, range: {false, true}, default: false]
allow_unbounded_or_infeasible = false

# Use relaxed implied bounds from presolve
# [type: bool, advanced: true, range: {false, true}, default: false]
use_implied_bounds_from_presolve = false

# Use the free format MPS file reader
# [type: bool, advanced: true, range: {false, true}, default: true]
mps_parser_type_free = true

# For multiple N-rows in MPS files: delete rows / delete entries / keep rows (-1/0/1)
# [type: HighsInt, advanced: true, range: {-1, 1}, default: -1]
keep_n_rows = -1

# Largest power-of-two factor permitted when scaling the constraint matrix for the simplex solver
# [type: HighsInt, advanced: true, range: {0, 20}, default: 10]
allowed_simplex_matrix_scale_factor = 10

# Largest power-of-two factor permitted when scaling the costs for the simplex solver
# [type: HighsInt, advanced: true, range: {0, 20}, default: 0]
allowed_simplex_cost_scale_factor = 0

# Strategy for dualising before simplex
# [type: HighsInt, advanced: true, range: {-1, 1}, default: -1]
simplex_dualise_strategy = -1

# Strategy for permuting before simplex
# [type: HighsInt, advanced: true, range: {-1, 1}, default: -1]
simplex_permute_strategy = -1

# Max level of dual simplex cleanup
# [type: HighsInt, advanced: true, range: {0, 2147483647}, default: 1]
max_dual_simplex_cleanup_level = 1

# Strategy for PRICE in simplex
# [type: HighsInt, advanced: true, range: {0, 3}, default: 3]
simplex_price_strategy = 3

# Perform initial basis condition check in simplex
# [type: bool, advanced: true, range: {false, true}, default: true]
simplex_initial_condition_check = true

# Tolerance on initial basis condition in simplex
# [type: double, advanced: true, range: [1, inf], default: 1e+14]
simplex_initial_condition_tolerance = 1e+14

# Threshold on dual steepest edge weight errors for Devex switch
# [type: double, advanced: true, range: [1, inf], default: 10]
dual_steepest_edge_weight_log_error_threshold = 10

# Dual simplex cost perturbation multiplier: 0 => no perturbation
# [type: double, advanced: true, range: [0, inf], default: 1]
dual_simplex_cost_perturbation_multiplier = 1

# Primal simplex bound perturbation multiplier: 0 => no perturbation
# [type: double, advanced: true, range: [0, inf], default: 1]
primal_simplex_bound_perturbation_multiplier = 1

# Matrix factorization pivot threshold for substitutions in presolve
# [type: double, advanced: true, range: [0.0008, 0.5], default: 0.01]
presolve_pivot_threshold = 0.01

# Strategy for CHUZC sort in dual simplex
# [type: HighsInt, advanced: true, range: {0, 2147483647}, default: 10]
presolve_substitution_maxfillin = 10

# Matrix factorization pivot threshold
# [type: double, advanced: true, range: [0.0008, 0.5], default: 0.1]
factor_pivot_threshold = 0.1

# Matrix factorization pivot tolerance
# [type: double, advanced: true, range: [0, 1], default: 1e-10]
factor_pivot_tolerance = 1e-10

# Tolerance to be satisfied before IPM crossover will start
# [type: double, advanced: true, range: [1e-12, inf], default: 1e-08]
start_crossover_tolerance = 1e-08

# Use original HFactor logic for sparse vs hyper-sparse TRANs
# [type: bool, advanced: true, range: {false, true}, default: true]
use_original_HFactor_logic = true

# Check whether LP is candidate for LiDSE
# [type: bool, advanced: true, range: {false, true}, default: true]
less_infeasible_DSE_check = true

# Use LiDSE if LP has right properties
# [type: bool, advanced: true, range: {false, true}, default: true]
less_infeasible_DSE_choose_row = true

About

Julia wrapper for the HiGHS solver

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Julia 100.0%