Skip to content

floydhub/dockerfiles

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Dockerfiles

Collection of Dockerfiles useful for NLP and Deep Learning. To download the docker images visit: floydhub's Docker Hub.

How to update framework

  1. Dockerfiles are generated using two inputs: matrix.yml and jinja template file inside ./dl/FRAMEWORK directory. matrix.yml provides variable values for jinja template files.
  • The $render list in matrix.yml controls what version of the framework to render.
  • For each version config in matrix.yml, any key starts with _ are global keys, which will get automatically injected into each variant config for that version.
  1. Most of the cases, you only need to update ./dl/FRAMEWORK/matrix.yml to generate a set of dockerfiles for a new version of a framework. If not, you will need to update the jinja file to account for build step changes.

  2. Install floydker: cd floydker && pipenv shell && pipenv install.

  3. Render dockerfiles: cd .. && floydker render ..

  4. Commit new docker images to git and push: git commit -a.

Naming conventions

Dockerfiles are organized into the following directory structure:

CATEGORY/PROJECT_NAME/VERSION/Dockerfile-ENV
CATEGORY/PROJECT_NAME/VERSION/Dockerfile-ENV.gpu

Automated build scripts will generate the following tags for images based on the above dockerfile paths:

floydhub/PROJECT_NAME:VERSION-ENV
floydhub/PROJECT_NAME:VERSION-ENV-gpu

Contains docker images for popular deep learning frameworks including: Tensorflow, PyTorch and Torch.