Skip to content

Commit

Permalink
Moved py_pairing components here
Browse files Browse the repository at this point in the history
  • Loading branch information
vbuterin committed Jun 20, 2017
0 parents commit ef0b041
Show file tree
Hide file tree
Showing 11 changed files with 998 additions and 0 deletions.
22 changes: 22 additions & 0 deletions LICENSE
Original file line number Diff line number Diff line change
@@ -0,0 +1,22 @@

The MIT License (MIT)

Copyright (c) 2015 Vitalik Buterin

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
1 change: 1 addition & 0 deletions README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1 @@
Implements optimal ate pairings over the bn\_128 curve.
3 changes: 3 additions & 0 deletions py_pairing/__init__.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,3 @@
from .optimized_curve import *
from .optimized_field_elements import *
from .optimized_pairing import *
119 changes: 119 additions & 0 deletions py_pairing/bn128_curve.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,119 @@
from bn128_field_elements import field_modulus, FQ
from optimized_field_elements import FQ2, FQ12
# from bn128_field_elements import FQ2, FQ12

curve_order = 21888242871839275222246405745257275088548364400416034343698204186575808495617

# Curve order should be prime
assert pow(2, curve_order, curve_order) == 2
# Curve order should be a factor of field_modulus**12 - 1
assert (field_modulus ** 12 - 1) % curve_order == 0

# Curve is y**2 = x**3 + 3
b = FQ(3)
# Twisted curve over FQ**2
b2 = FQ2([3, 0]) / FQ2([9, 1])
# Extension curve over FQ**12; same b value as over FQ
b12 = FQ12([3] + [0] * 11)

# Generator for curve over FQ
G1 = (FQ(1), FQ(2))
# Generator for twisted curve over FQ2
G2 = (FQ2([10857046999023057135944570762232829481370756359578518086990519993285655852781, 11559732032986387107991004021392285783925812861821192530917403151452391805634]),
FQ2([8495653923123431417604973247489272438418190587263600148770280649306958101930, 4082367875863433681332203403145435568316851327593401208105741076214120093531]))

# Check that a point is on the curve defined by y**2 == x**3 + b
def is_on_curve(pt, b):
if pt is None:
return True
x, y = pt
return y**2 - x**3 == b

assert is_on_curve(G1, b)
assert is_on_curve(G2, b2)

# Elliptic curve doubling
def double(pt):
x, y = pt
l = 3 * x**2 / (2 * y)
newx = l**2 - 2 * x
newy = -l * newx + l * x - y
return newx, newy

# Elliptic curve addition
def add(p1, p2):
if p1 is None or p2 is None:
return p1 if p2 is None else p2
x1, y1 = p1
x2, y2 = p2
if x2 == x1 and y2 == y1:
return double(p1)
elif x2 == x1:
return None
else:
l = (y2 - y1) / (x2 - x1)
newx = l**2 - x1 - x2
newy = -l * newx + l * x1 - y1
assert newy == (-l * newx + l * x2 - y2)
return (newx, newy)

# Elliptic curve point multiplication
def multiply(pt, n):
if n == 0:
return None
elif n == 1:
return pt
elif not n % 2:
return multiply(double(pt), n // 2)
else:
return add(multiply(double(pt), int(n // 2)), pt)

# Check that the G1 curve works fine
assert add(add(double(G1), G1), G1) == double(double(G1))
assert double(G1) != G1
assert add(multiply(G1, 9), multiply(G1, 5)) == add(multiply(G1, 12), multiply(G1, 2))
assert multiply(G1, curve_order) is None

# Check that the G2 curve works fine
assert add(add(double(G2), G2), G2) == double(double(G2))
assert double(G2) != G2
assert add(multiply(G2, 9), multiply(G2, 5)) == add(multiply(G2, 12), multiply(G2, 2))
assert multiply(G2, curve_order) is None
assert multiply(G2, 2 * field_modulus - curve_order) is not None
assert is_on_curve(multiply(G2, 9), b2)

# "Twist" a point in E(FQ2) into a point in E(FQ12)
w = FQ12([0, 1] + [0] * 10)

# Convert P => -P
def neg(pt):
if pt is None:
return None
x, y = pt
return (x, -y)

def twist(pt):
if pt is None:
return None
_x, _y = pt
# Field isomorphism from Z[p] / x**2 to Z[p] / x**2 - 18*x + 82
xcoeffs = [_x.coeffs[0] - _x.coeffs[1] * 9, _x.coeffs[1]]
ycoeffs = [_y.coeffs[0] - _y.coeffs[1] * 9, _y.coeffs[1]]
# Isomorphism into subfield of Z[p] / w**12 - 18 * w**6 + 82,
# where w**6 = x
nx = FQ12([xcoeffs[0]] + [0] * 5 + [xcoeffs[1]] + [0] * 5)
ny = FQ12([ycoeffs[0]] + [0] * 5 + [ycoeffs[1]] + [0] * 5)
# Divide x coord by w**2 and y coord by w**3
return (nx * w **2, ny * w**3)

# Check that the twist creates a point that is on the curve
assert is_on_curve(twist(G2), b12)

# Check that the G12 curve works fine

G12 = twist(G2)
assert add(add(double(G12), G12), G12) == double(double(G12))
assert double(G12) != G12
assert add(multiply(G12, 9), multiply(G12, 5)) == add(multiply(G12, 12), multiply(G12, 2))
assert is_on_curve(multiply(G12, 9), b12)
assert multiply(G12, curve_order) is None
Loading

0 comments on commit ef0b041

Please sign in to comment.