Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

seed explicitly MersenneTwister(0) #105

Merged
merged 1 commit into from
Apr 2, 2017
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
7 changes: 3 additions & 4 deletions deprecated/src7/deprecated/model.jl
Original file line number Diff line number Diff line change
Expand Up @@ -18,7 +18,7 @@ gnorm(m::Model,g=0)=(for p in params(m); g += vnorm(p.dif); end; g) #
item2xy(item)=(isa(item, Tuple) ? (item[1:end-1],item[end]) : item==nothing ? (nothing,nothing) : ((),item))

# So gradient checking does not mess up random seed:
const gradcheck_rng = MersenneTwister()
const gradcheck_rng = MersenneTwister(0)


# train(m, d; seq=false, a...)=(!seq ? train1(m,d;a...) : train2(m,d;a...))
Expand Down Expand Up @@ -48,7 +48,7 @@ const gradcheck_rng = MersenneTwister()
# end

# NO: make the model interface more functional:
# back and loss rely on hidden state info.
# back and loss rely on hidden state info.
# forw has to allocate.
# purely functional models are impossible.
# forw needs to compute intermediate values.
Expand All @@ -71,7 +71,7 @@ const gradcheck_rng = MersenneTwister()
# end

# Use test with percloss instead:
#
#
# function accuracy(m::Model, d) # TODO: this only works if y is a single item
# numcorr = numinst = 0
# z = nothing
Expand Down Expand Up @@ -108,4 +108,3 @@ const gradcheck_rng = MersenneTwister()
# end
# return sumloss/numloss
# end

4 changes: 2 additions & 2 deletions deprecated/src7/gradcheck.jl
Original file line number Diff line number Diff line change
@@ -1,8 +1,8 @@
function gradcheck(m, grad, loss; gcheck=10, _eps=cbrt(eps(eltype(m))), delta=_eps, atol=_eps, rtol=_eps, o...)
# 6e-6 for Float64, 5e-3 for Float32 works best
# rnum = 42 # time_ns() #DBG
# isdefined(data,:rng) && (data_rng_save = data.rng; data.rng=MersenneTwister(); srand(data.rng,rnum))
# isdefined(m,:rng) && (m_rng_save = m.rng; m.rng=MersenneTwister(); srand(m.rng,rnum))
# isdefined(data,:rng) && (data_rng_save = data.rng; data.rng=MersenneTwister(0); srand(data.rng,rnum))
# isdefined(m,:rng) && (m_rng_save = m.rng; m.rng=MersenneTwister(0); srand(m.rng,rnum))
# l = zeros(2)
# train(m, data, loss; gcheck=true, losscnt=fill!(l,0), o...)
# loss0 = l[1]
Expand Down
16 changes: 7 additions & 9 deletions examples/deprecated/adding.jl
Original file line number Diff line number Diff line change
Expand Up @@ -65,8 +65,7 @@ end

function gradloss(f, data, loss; grad=false, seed=42)
data_rng = data.rng
data.rng = MersenneTwister()
srand(data.rng, seed)
data.rng = MersenneTwister(seed)
reset!(f)
myforw = grad ? sforw : forw
loss1 = 0
Expand All @@ -93,7 +92,7 @@ import Base: start, next, done

type Data; len; batchsize; epochsize; batch; sum; cnt; rng;
Data(len, batchsize, epochsize; rng=Base.GLOBAL_RNG) =
new(len, batchsize, epochsize, zeros(Float32,2,batchsize),
new(len, batchsize, epochsize, zeros(Float32,2,batchsize),
zeros(Float32,1,batchsize), zeros(Int,1,batchsize), rng)
end

Expand All @@ -109,7 +108,7 @@ function next(a::Data, s)
fill!(sub(a.batch,2,:),0)
togo = a.len - t
for b=1:a.batchsize
if (a.cnt[b]==0 ? rand(a.rng) <= 2/togo :
if (a.cnt[b]==0 ? rand(a.rng) <= 2/togo :
a.cnt[b]==1 ? rand(a.rng) <= 1/togo : false)
a.batch[2,b] = 1
a.cnt[b] += 1
Expand Down Expand Up @@ -407,7 +406,7 @@ end #module
# return(xx, yy)
# end
# net0 = (args["type"] == "irnn" ? Net(irnn(nh),quadlosslayer(ny)) :
# args["type"] == "lstm" ? Net(lstm(nh),quadlosslayer(ny)) :
# args["type"] == "lstm" ? Net(lstm(nh),quadlosslayer(ny)) :
# error("Unknown network type "*args["type"]))
# setparam!(net; lr=args["lr"], gc=args["gc"]) # do a global gclip instead of per parameter
# "--test"
Expand Down Expand Up @@ -529,7 +528,7 @@ end #module

# OLD GENERATOR FOR COMPARISON:

# type Adding1; len; batchsize; epochsize; b; x; y;
# type Adding1; len; batchsize; epochsize; b; x; y;
# Adding1(len, batchsize, epochsize; o...)=new(len,batchsize,epochsize,Adding0(len,batchsize,epochsize; o...))
# end

Expand All @@ -548,7 +547,7 @@ end #module
# end

# type Adding0; len; batchsize; epochsize; rng;
# Adding0(len, batchsize, epochsize; rng=MersenneTwister())=new(len, batchsize, epochsize, rng)
# Adding0(len, batchsize, epochsize; rng=MersenneTwister(0))=new(len, batchsize, epochsize, rng)
# end

# start(a::Adding0)=0
Expand All @@ -574,7 +573,7 @@ end #module


# p1 = (opts["nettype"] == "irnn" ? Net(irnn; out=opts["hidden"], winit=Gaussian(0,opts["winit"])) :
# opts["nettype"] == "lstm" ? Net(lstm; out=opts["hidden"], fbias=opts["fbias"]) :
# opts["nettype"] == "lstm" ? Net(lstm; out=opts["hidden"], fbias=opts["fbias"]) :
# error("Unknown network type "*opts["nettype"]))
# p2 = Net(wb; out=1, winit=Gaussian(0,opts["winit"]))

Expand All @@ -585,4 +584,3 @@ end #module
# @knet function p2(x; o...)
# y = wb(x; o..., out=1)
# end

9 changes: 4 additions & 5 deletions examples/deprecated/mnistpixels.jl
Original file line number Diff line number Diff line change
Expand Up @@ -86,8 +86,7 @@ end

function gradloss(f, data, loss; grad=false, seed=42)
data_rng = data.rng
data.rng = MersenneTwister()
srand(data.rng, seed)
data.rng = MersenneTwister(seed)
reset!(f)
myforw = grad ? sforw : forw
loss1 = 0
Expand Down Expand Up @@ -118,7 +117,7 @@ import Base: start, next, done
# the last pixel should be served as x(1,batch), y(10,batch)

type Pixels; x; y; rng; datasize; epochsize; batchsize; bootstrap; shuffle; xbatch; ybatch; images;
function Pixels(x, y; rng=MersenneTwister(), epoch=ccount(x), batch=16, bootstrap=false, shuffle=false)
function Pixels(x, y; rng=MersenneTwister(0), epoch=ccount(x), batch=16, bootstrap=false, shuffle=false)
nx = ccount(x)
nx == ccount(y) || error("Item count mismatch")
shuf = (shuffle ? shuffle!(rng,[1:nx;]) : nothing)
Expand Down Expand Up @@ -176,7 +175,7 @@ function parse_commandline(args)
"--lrate"
help = "learning rate"
arg_type = Float64
default = 0.005 # paper says 1e-8?
default = 0.005 # paper says 1e-8?
"--gclip"
help = "gradient clip"
arg_type = Float64
Expand Down Expand Up @@ -277,6 +276,6 @@ end # module

# S2C no longer accepts Net, it expects kfun:
# p1 = (nettype == "irnn" ? Net(irnn; out=hidden, winit=Gaussian(0,winit)) :
# nettype == "lstm" ? Net(lstm; out=hidden, fbias=fbias) :
# nettype == "lstm" ? Net(lstm; out=hidden, fbias=fbias) :
# error("Unknown network type "*nettype))
# p2 = Net(wbf; out=10, winit=Gaussian(0,winit), f=soft)