Skip to content

Commit

Permalink
ABI compatibility: remove section on target features
Browse files Browse the repository at this point in the history
  • Loading branch information
RalfJung committed Oct 25, 2024
1 parent 2da7b7f commit 2d26681
Showing 1 changed file with 6 additions and 26 deletions.
32 changes: 6 additions & 26 deletions core/src/primitive_docs.rs
Original file line number Diff line number Diff line change
Expand Up @@ -1743,20 +1743,18 @@ mod prim_ref {}
/// alignment, they might be passed in different registers and hence not be ABI-compatible.
///
/// ABI compatibility as a concern only arises in code that alters the type of function pointers,
/// code that imports functions via `extern` blocks, and in code that combines `#[target_feature]`
/// with `extern fn`. Altering the type of function pointers is wildly unsafe (as in, a lot more
/// unsafe than even [`transmute_copy`][mem::transmute_copy]), and should only occur in the most
/// exceptional circumstances. Most Rust code just imports functions via `use`. `#[target_feature]`
/// is also used rarely. So, most likely you do not have to worry about ABI compatibility.
/// and code that imports functions via `extern` blocks. Altering the type of function pointers is
/// wildly unsafe (as in, a lot more unsafe than even [`transmute_copy`][mem::transmute_copy]), and
/// should only occur in the most exceptional circumstances. Most Rust code just imports functions
/// via `use`. So, most likely you do not have to worry about ABI compatibility.
///
/// But assuming such circumstances, what are the rules? For this section, we are only considering
/// the ABI of direct Rust-to-Rust calls, not linking in general -- once functions are imported via
/// `extern` blocks, there are more things to consider that we do not go into here.
///
/// For two signatures to be considered *ABI-compatible*, they must use a compatible ABI string,
/// must take the same number of arguments, the individual argument types and the return types must
/// be ABI-compatible, and the target feature requirements must be met (see the subsection below for
/// the last point). The ABI string is declared via `extern "ABI" fn(...) -> ...`; note that
/// must take the same number of arguments, and the individual argument types and the return types
/// must be ABI-compatible. The ABI string is declared via `extern "ABI" fn(...) -> ...`; note that
/// `fn name(...) -> ...` implicitly uses the `"Rust"` ABI string and `extern fn name(...) -> ...`
/// implicitly uses the `"C"` ABI string.
///
Expand Down Expand Up @@ -1826,24 +1824,6 @@ mod prim_ref {}
/// Behavior since transmuting `None::<NonZero<i32>>` to `NonZero<i32>` violates the non-zero
/// requirement.
///
/// #### Requirements concerning target features
///
/// Under some conditions, the signature used by the caller and the callee can be ABI-incompatible
/// even if the exact same ABI string and types are being used. As an example, the
/// `std::arch::x86_64::__m256` type has a different `extern "C"` ABI when the `avx` feature is
/// enabled vs when it is not enabled.
///
/// Therefore, to ensure ABI compatibility when code using different target features is combined
/// (such as via `#[target_feature]`), we further require that one of the following conditions is
/// met:
///
/// - The function uses the `"Rust"` ABI string (which is the default without `extern`).
/// - Caller and callee are using the exact same set of target features. For the callee we consider
/// the features enabled (via `#[target_feature]` and `-C target-feature`/`-C target-cpu`) at the
/// declaration site; for the caller we consider the features enabled at the call site.
/// - Neither any argument nor the return value involves a SIMD type (`#[repr(simd)]`) that is not
/// behind a pointer indirection (i.e., `*mut __m256` is fine, but `(i32, __m256)` is not).
///
/// ### Trait implementations
///
/// In this documentation the shorthand `fn(T₁, T₂, …, Tₙ)` is used to represent non-variadic
Expand Down

0 comments on commit 2d26681

Please sign in to comment.