-
-
Notifications
You must be signed in to change notification settings - Fork 3.7k
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
bevy_reflect: Improve serialization format #4561
Conversation
I actually hadn't seen #92, so thanks for pointing that out! In regards to #4153, though, I think this is a good intermediate step towards a syntax like that. The main "issue" with the syntax proposed in that PR is that it's pretty reliant on the RON format and likely wouldn't translate to JSON or other formats well— especially if they're generated by a non-Rust tool (see @james7132's comment). So I think this is (hopefully) a less controversial improvement to the format while we decide and finalize on something like #4153. |
81c6d50
to
8537bcd
Compare
7bbb300
to
5e6b188
Compare
Anecdotally, this will be really useful in a surprising way; I'm using reflection to power messages for my editor, so cutting down on the verbosity is a performance win as well as a reliability win for how much types can change or move before messages become invalid between versions. |
This would be appreciated. I've had cases where I trivially reorganized code and completely broke all of my serialized structs in frustrating ways that are hard for beginners to debug. |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
LGTM!
80c8db4
to
3debda4
Compare
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Nice work, awesome change! Just a tinny nit and a question. I'm a bit wary from the repetition, but I know from experience it's basically impossible to work around it.
053d265
to
9d656b1
Compare
My suggestion on making the serialization syntax even more human-processable: omit ExampleInstead of {
"type": "my_game::inventory::Inventory",
"value": {
"id": "inv001",
"max_storage": 10,
"items": [
(
id: "Pickaxe"
)
],
},
}, we would write "my_game::inventory::Inventory": {
"id": "inv001",
"max_storage": 10,
"items": [
(
id: "Pickaxe"
)
],
}, Why?TL;DR it is just a less error-prone and more intuitive representation without artificial to JSON / RON / YAML rules, instead these rules are expressed naturally through JSON / RON / YAML syntax.
Alternatives considered#4153 is a good pitch too and aims to solve the same issue, except the solution @AronDerenyi proposed only solves one of the two inconsistencies. For RON it looks nicer, but it still uses arrays to represent entity's components, which allows for multiple components on a syntax level, which is semantically invalid and has to be limited, whereas what I propose doesn't allow for that. Also I don't think you really can express the same syntax with JSON, YAML etc. meaning that it is less portable. |
I really like this last suggestion here, by @Metadorius , for the format. :) Agreed with the reasoning. Seems like this is perhaps the best proposal we have so far. |
I updated the code and the PR description to follow @Metadorius' suggestion! It now uses |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Example scene needs to be updated to the new format, other than that looks great. Really looking forward to this getting merged!
c70308e
to
aa1f1aa
Compare
aa1f1aa
to
c7475e9
Compare
04c28e2
to
90433d1
Compare
Closed in favor of #5723 per #5723 (comment) 🎉 |
> Note: This is rebased off #4561 and can be viewed as a competitor to that PR. See `Comparison with #4561` section for details. # Objective The current serialization format used by `bevy_reflect` is both verbose and error-prone. Taking the following structs[^1] for example: ```rust // -- src/inventory.rs #[derive(Reflect)] struct Inventory { id: String, max_storage: usize, items: Vec<Item> } #[derive(Reflect)] struct Item { name: String } ``` Given an inventory of a single item, this would serialize to something like: ```rust // -- assets/inventory.ron { "type": "my_game::inventory::Inventory", "struct": { "id": { "type": "alloc::string::String", "value": "inv001", }, "max_storage": { "type": "usize", "value": 10 }, "items": { "type": "alloc::vec::Vec<alloc::string::String>", "list": [ { "type": "my_game::inventory::Item", "struct": { "name": { "type": "alloc::string::String", "value": "Pickaxe" }, }, }, ], }, }, } ``` Aside from being really long and difficult to read, it also has a few "gotchas" that users need to be aware of if they want to edit the file manually. A major one is the requirement that you use the proper keys for a given type. For structs, you need `"struct"`. For lists, `"list"`. For tuple structs, `"tuple_struct"`. And so on. It also ***requires*** that the `"type"` entry come before the actual data. Despite being a map— which in programming is almost always orderless by default— the entries need to be in a particular order. Failure to follow the ordering convention results in a failure to deserialize the data. This makes it very prone to errors and annoyances. ## Solution Using #4042, we can remove a lot of the boilerplate and metadata needed by this older system. Since we now have static access to type information, we can simplify our serialized data to look like: ```rust // -- assets/inventory.ron { "my_game::inventory::Inventory": ( id: "inv001", max_storage: 10, items: [ ( name: "Pickaxe" ), ], ), } ``` This is much more digestible and a lot less error-prone (no more key requirements and no more extra type names). Additionally, it is a lot more familiar to users as it follows conventional serde mechanics. For example, the struct is represented with `(...)` when serialized to RON. #### Custom Serialization Additionally, this PR adds the opt-in ability to specify a custom serde implementation to be used rather than the one created via reflection. For example[^1]: ```rust // -- src/inventory.rs #[derive(Reflect, Serialize)] #[reflect(Serialize)] struct Item { #[serde(alias = "id")] name: String } ``` ```rust // -- assets/inventory.ron { "my_game::inventory::Inventory": ( id: "inv001", max_storage: 10, items: [ ( id: "Pickaxe" ), ], ), }, ``` By allowing users to define their own serialization methods, we do two things: 1. We give more control over how data is serialized/deserialized to the end user 2. We avoid having to re-define serde's attributes and forcing users to apply both (e.g. we don't need a `#[reflect(alias)]` attribute). ### Improved Formats One of the improvements this PR provides is the ability to represent data in ways that are more conventional and/or familiar to users. Many users are familiar with RON so here are some of the ways we can now represent data in RON: ###### Structs ```js { "my_crate::Foo": ( bar: 123 ) } // OR { "my_crate::Foo": Foo( bar: 123 ) } ``` <details> <summary>Old Format</summary> ```js { "type": "my_crate::Foo", "struct": { "bar": { "type": "usize", "value": 123 } } } ``` </details> ###### Tuples ```js { "(f32, f32)": (1.0, 2.0) } ``` <details> <summary>Old Format</summary> ```js { "type": "(f32, f32)", "tuple": [ { "type": "f32", "value": 1.0 }, { "type": "f32", "value": 2.0 } ] } ``` </details> ###### Tuple Structs ```js { "my_crate::Bar": ("Hello World!") } // OR { "my_crate::Bar": Bar("Hello World!") } ``` <details> <summary>Old Format</summary> ```js { "type": "my_crate::Bar", "tuple_struct": [ { "type": "alloc::string::String", "value": "Hello World!" } ] } ``` </details> ###### Arrays It may be a bit surprising to some, but arrays now also use the tuple format. This is because they essentially _are_ tuples (a sequence of values with a fixed size), but only allow for homogenous types. Additionally, this is how RON handles them and is probably a result of the 32-capacity limit imposed on them (both by [serde](https://docs.rs/serde/latest/serde/trait.Serialize.html#impl-Serialize-for-%5BT%3B%2032%5D) and by [bevy_reflect](https://docs.rs/bevy/latest/bevy/reflect/trait.GetTypeRegistration.html#impl-GetTypeRegistration-for-%5BT%3B%2032%5D)). ```js { "[i32; 3]": (1, 2, 3) } ``` <details> <summary>Old Format</summary> ```js { "type": "[i32; 3]", "array": [ { "type": "i32", "value": 1 }, { "type": "i32", "value": 2 }, { "type": "i32", "value": 3 } ] } ``` </details> ###### Enums To make things simple, I'll just put a struct variant here, but the style applies to all variant types: ```js { "my_crate::ItemType": Consumable( name: "Healing potion" ) } ``` <details> <summary>Old Format</summary> ```js { "type": "my_crate::ItemType", "enum": { "variant": "Consumable", "struct": { "name": { "type": "alloc::string::String", "value": "Healing potion" } } } } ``` </details> ### Comparison with #4561 This PR is a rebased version of #4561. The reason for the split between the two is because this PR creates a _very_ different scene format. You may notice that the PR descriptions for either PR are pretty similar. This was done to better convey the changes depending on which (if any) gets merged first. If #4561 makes it in first, I will update this PR description accordingly. --- ## Changelog * Re-worked serialization/deserialization for reflected types * Added `TypedReflectDeserializer` for deserializing data with known `TypeInfo` * Renamed `ReflectDeserializer` to `UntypedReflectDeserializer` * ~~Replaced usages of `deserialize_any` with `deserialize_map` for non-self-describing formats~~ Reverted this change since there are still some issues that need to be sorted out (in a separate PR). By reverting this, crates like `bincode` can throw an error when attempting to deserialize non-self-describing formats (`bincode` results in `DeserializeAnyNotSupported`) * Structs, tuples, tuple structs, arrays, and enums are now all de/serialized using conventional serde methods ## Migration Guide * This PR reduces the verbosity of the scene format. Scenes will need to be updated accordingly: ```js // Old format { "type": "my_game::item::Item", "struct": { "id": { "type": "alloc::string::String", "value": "bevycraft:stone", }, "tags": { "type": "alloc::vec::Vec<alloc::string::String>", "list": [ { "type": "alloc::string::String", "value": "material" }, ], }, } // New format { "my_game::item::Item": ( id: "bevycraft:stone", tags: ["material"] ) } ``` [^1]: Some derives omitted for brevity.
> Note: This is rebased off #4561 and can be viewed as a competitor to that PR. See `Comparison with #4561` section for details. # Objective The current serialization format used by `bevy_reflect` is both verbose and error-prone. Taking the following structs[^1] for example: ```rust // -- src/inventory.rs #[derive(Reflect)] struct Inventory { id: String, max_storage: usize, items: Vec<Item> } #[derive(Reflect)] struct Item { name: String } ``` Given an inventory of a single item, this would serialize to something like: ```rust // -- assets/inventory.ron { "type": "my_game::inventory::Inventory", "struct": { "id": { "type": "alloc::string::String", "value": "inv001", }, "max_storage": { "type": "usize", "value": 10 }, "items": { "type": "alloc::vec::Vec<alloc::string::String>", "list": [ { "type": "my_game::inventory::Item", "struct": { "name": { "type": "alloc::string::String", "value": "Pickaxe" }, }, }, ], }, }, } ``` Aside from being really long and difficult to read, it also has a few "gotchas" that users need to be aware of if they want to edit the file manually. A major one is the requirement that you use the proper keys for a given type. For structs, you need `"struct"`. For lists, `"list"`. For tuple structs, `"tuple_struct"`. And so on. It also ***requires*** that the `"type"` entry come before the actual data. Despite being a map— which in programming is almost always orderless by default— the entries need to be in a particular order. Failure to follow the ordering convention results in a failure to deserialize the data. This makes it very prone to errors and annoyances. ## Solution Using #4042, we can remove a lot of the boilerplate and metadata needed by this older system. Since we now have static access to type information, we can simplify our serialized data to look like: ```rust // -- assets/inventory.ron { "my_game::inventory::Inventory": ( id: "inv001", max_storage: 10, items: [ ( name: "Pickaxe" ), ], ), } ``` This is much more digestible and a lot less error-prone (no more key requirements and no more extra type names). Additionally, it is a lot more familiar to users as it follows conventional serde mechanics. For example, the struct is represented with `(...)` when serialized to RON. #### Custom Serialization Additionally, this PR adds the opt-in ability to specify a custom serde implementation to be used rather than the one created via reflection. For example[^1]: ```rust // -- src/inventory.rs #[derive(Reflect, Serialize)] #[reflect(Serialize)] struct Item { #[serde(alias = "id")] name: String } ``` ```rust // -- assets/inventory.ron { "my_game::inventory::Inventory": ( id: "inv001", max_storage: 10, items: [ ( id: "Pickaxe" ), ], ), }, ``` By allowing users to define their own serialization methods, we do two things: 1. We give more control over how data is serialized/deserialized to the end user 2. We avoid having to re-define serde's attributes and forcing users to apply both (e.g. we don't need a `#[reflect(alias)]` attribute). ### Improved Formats One of the improvements this PR provides is the ability to represent data in ways that are more conventional and/or familiar to users. Many users are familiar with RON so here are some of the ways we can now represent data in RON: ###### Structs ```js { "my_crate::Foo": ( bar: 123 ) } // OR { "my_crate::Foo": Foo( bar: 123 ) } ``` <details> <summary>Old Format</summary> ```js { "type": "my_crate::Foo", "struct": { "bar": { "type": "usize", "value": 123 } } } ``` </details> ###### Tuples ```js { "(f32, f32)": (1.0, 2.0) } ``` <details> <summary>Old Format</summary> ```js { "type": "(f32, f32)", "tuple": [ { "type": "f32", "value": 1.0 }, { "type": "f32", "value": 2.0 } ] } ``` </details> ###### Tuple Structs ```js { "my_crate::Bar": ("Hello World!") } // OR { "my_crate::Bar": Bar("Hello World!") } ``` <details> <summary>Old Format</summary> ```js { "type": "my_crate::Bar", "tuple_struct": [ { "type": "alloc::string::String", "value": "Hello World!" } ] } ``` </details> ###### Arrays It may be a bit surprising to some, but arrays now also use the tuple format. This is because they essentially _are_ tuples (a sequence of values with a fixed size), but only allow for homogenous types. Additionally, this is how RON handles them and is probably a result of the 32-capacity limit imposed on them (both by [serde](https://docs.rs/serde/latest/serde/trait.Serialize.html#impl-Serialize-for-%5BT%3B%2032%5D) and by [bevy_reflect](https://docs.rs/bevy/latest/bevy/reflect/trait.GetTypeRegistration.html#impl-GetTypeRegistration-for-%5BT%3B%2032%5D)). ```js { "[i32; 3]": (1, 2, 3) } ``` <details> <summary>Old Format</summary> ```js { "type": "[i32; 3]", "array": [ { "type": "i32", "value": 1 }, { "type": "i32", "value": 2 }, { "type": "i32", "value": 3 } ] } ``` </details> ###### Enums To make things simple, I'll just put a struct variant here, but the style applies to all variant types: ```js { "my_crate::ItemType": Consumable( name: "Healing potion" ) } ``` <details> <summary>Old Format</summary> ```js { "type": "my_crate::ItemType", "enum": { "variant": "Consumable", "struct": { "name": { "type": "alloc::string::String", "value": "Healing potion" } } } } ``` </details> ### Comparison with #4561 This PR is a rebased version of #4561. The reason for the split between the two is because this PR creates a _very_ different scene format. You may notice that the PR descriptions for either PR are pretty similar. This was done to better convey the changes depending on which (if any) gets merged first. If #4561 makes it in first, I will update this PR description accordingly. --- ## Changelog * Re-worked serialization/deserialization for reflected types * Added `TypedReflectDeserializer` for deserializing data with known `TypeInfo` * Renamed `ReflectDeserializer` to `UntypedReflectDeserializer` * ~~Replaced usages of `deserialize_any` with `deserialize_map` for non-self-describing formats~~ Reverted this change since there are still some issues that need to be sorted out (in a separate PR). By reverting this, crates like `bincode` can throw an error when attempting to deserialize non-self-describing formats (`bincode` results in `DeserializeAnyNotSupported`) * Structs, tuples, tuple structs, arrays, and enums are now all de/serialized using conventional serde methods ## Migration Guide * This PR reduces the verbosity of the scene format. Scenes will need to be updated accordingly: ```js // Old format { "type": "my_game::item::Item", "struct": { "id": { "type": "alloc::string::String", "value": "bevycraft:stone", }, "tags": { "type": "alloc::vec::Vec<alloc::string::String>", "list": [ { "type": "alloc::string::String", "value": "material" }, ], }, } // New format { "my_game::item::Item": ( id: "bevycraft:stone", tags: ["material"] ) } ``` [^1]: Some derives omitted for brevity.
> Note: This is rebased off bevyengine#4561 and can be viewed as a competitor to that PR. See `Comparison with bevyengine#4561` section for details. # Objective The current serialization format used by `bevy_reflect` is both verbose and error-prone. Taking the following structs[^1] for example: ```rust // -- src/inventory.rs #[derive(Reflect)] struct Inventory { id: String, max_storage: usize, items: Vec<Item> } #[derive(Reflect)] struct Item { name: String } ``` Given an inventory of a single item, this would serialize to something like: ```rust // -- assets/inventory.ron { "type": "my_game::inventory::Inventory", "struct": { "id": { "type": "alloc::string::String", "value": "inv001", }, "max_storage": { "type": "usize", "value": 10 }, "items": { "type": "alloc::vec::Vec<alloc::string::String>", "list": [ { "type": "my_game::inventory::Item", "struct": { "name": { "type": "alloc::string::String", "value": "Pickaxe" }, }, }, ], }, }, } ``` Aside from being really long and difficult to read, it also has a few "gotchas" that users need to be aware of if they want to edit the file manually. A major one is the requirement that you use the proper keys for a given type. For structs, you need `"struct"`. For lists, `"list"`. For tuple structs, `"tuple_struct"`. And so on. It also ***requires*** that the `"type"` entry come before the actual data. Despite being a map— which in programming is almost always orderless by default— the entries need to be in a particular order. Failure to follow the ordering convention results in a failure to deserialize the data. This makes it very prone to errors and annoyances. ## Solution Using bevyengine#4042, we can remove a lot of the boilerplate and metadata needed by this older system. Since we now have static access to type information, we can simplify our serialized data to look like: ```rust // -- assets/inventory.ron { "my_game::inventory::Inventory": ( id: "inv001", max_storage: 10, items: [ ( name: "Pickaxe" ), ], ), } ``` This is much more digestible and a lot less error-prone (no more key requirements and no more extra type names). Additionally, it is a lot more familiar to users as it follows conventional serde mechanics. For example, the struct is represented with `(...)` when serialized to RON. #### Custom Serialization Additionally, this PR adds the opt-in ability to specify a custom serde implementation to be used rather than the one created via reflection. For example[^1]: ```rust // -- src/inventory.rs #[derive(Reflect, Serialize)] #[reflect(Serialize)] struct Item { #[serde(alias = "id")] name: String } ``` ```rust // -- assets/inventory.ron { "my_game::inventory::Inventory": ( id: "inv001", max_storage: 10, items: [ ( id: "Pickaxe" ), ], ), }, ``` By allowing users to define their own serialization methods, we do two things: 1. We give more control over how data is serialized/deserialized to the end user 2. We avoid having to re-define serde's attributes and forcing users to apply both (e.g. we don't need a `#[reflect(alias)]` attribute). ### Improved Formats One of the improvements this PR provides is the ability to represent data in ways that are more conventional and/or familiar to users. Many users are familiar with RON so here are some of the ways we can now represent data in RON: ###### Structs ```js { "my_crate::Foo": ( bar: 123 ) } // OR { "my_crate::Foo": Foo( bar: 123 ) } ``` <details> <summary>Old Format</summary> ```js { "type": "my_crate::Foo", "struct": { "bar": { "type": "usize", "value": 123 } } } ``` </details> ###### Tuples ```js { "(f32, f32)": (1.0, 2.0) } ``` <details> <summary>Old Format</summary> ```js { "type": "(f32, f32)", "tuple": [ { "type": "f32", "value": 1.0 }, { "type": "f32", "value": 2.0 } ] } ``` </details> ###### Tuple Structs ```js { "my_crate::Bar": ("Hello World!") } // OR { "my_crate::Bar": Bar("Hello World!") } ``` <details> <summary>Old Format</summary> ```js { "type": "my_crate::Bar", "tuple_struct": [ { "type": "alloc::string::String", "value": "Hello World!" } ] } ``` </details> ###### Arrays It may be a bit surprising to some, but arrays now also use the tuple format. This is because they essentially _are_ tuples (a sequence of values with a fixed size), but only allow for homogenous types. Additionally, this is how RON handles them and is probably a result of the 32-capacity limit imposed on them (both by [serde](https://docs.rs/serde/latest/serde/trait.Serialize.html#impl-Serialize-for-%5BT%3B%2032%5D) and by [bevy_reflect](https://docs.rs/bevy/latest/bevy/reflect/trait.GetTypeRegistration.html#impl-GetTypeRegistration-for-%5BT%3B%2032%5D)). ```js { "[i32; 3]": (1, 2, 3) } ``` <details> <summary>Old Format</summary> ```js { "type": "[i32; 3]", "array": [ { "type": "i32", "value": 1 }, { "type": "i32", "value": 2 }, { "type": "i32", "value": 3 } ] } ``` </details> ###### Enums To make things simple, I'll just put a struct variant here, but the style applies to all variant types: ```js { "my_crate::ItemType": Consumable( name: "Healing potion" ) } ``` <details> <summary>Old Format</summary> ```js { "type": "my_crate::ItemType", "enum": { "variant": "Consumable", "struct": { "name": { "type": "alloc::string::String", "value": "Healing potion" } } } } ``` </details> ### Comparison with bevyengine#4561 This PR is a rebased version of bevyengine#4561. The reason for the split between the two is because this PR creates a _very_ different scene format. You may notice that the PR descriptions for either PR are pretty similar. This was done to better convey the changes depending on which (if any) gets merged first. If bevyengine#4561 makes it in first, I will update this PR description accordingly. --- ## Changelog * Re-worked serialization/deserialization for reflected types * Added `TypedReflectDeserializer` for deserializing data with known `TypeInfo` * Renamed `ReflectDeserializer` to `UntypedReflectDeserializer` * ~~Replaced usages of `deserialize_any` with `deserialize_map` for non-self-describing formats~~ Reverted this change since there are still some issues that need to be sorted out (in a separate PR). By reverting this, crates like `bincode` can throw an error when attempting to deserialize non-self-describing formats (`bincode` results in `DeserializeAnyNotSupported`) * Structs, tuples, tuple structs, arrays, and enums are now all de/serialized using conventional serde methods ## Migration Guide * This PR reduces the verbosity of the scene format. Scenes will need to be updated accordingly: ```js // Old format { "type": "my_game::item::Item", "struct": { "id": { "type": "alloc::string::String", "value": "bevycraft:stone", }, "tags": { "type": "alloc::vec::Vec<alloc::string::String>", "list": [ { "type": "alloc::string::String", "value": "material" }, ], }, } // New format { "my_game::item::Item": ( id: "bevycraft:stone", tags: ["material"] ) } ``` [^1]: Some derives omitted for brevity.
# Objective Currently scenes define components using a list: ```rust [ ( entity: 0, components: [ { "bevy_transform::components::transform::Transform": ( translation: ( x: 0.0, y: 0.0, z: 0.0 ), rotation: (0.0, 0.0, 0.0, 1.0), scale: ( x: 1.0, y: 1.0, z: 1.0 ), ), }, { "my_crate::Foo": ( text: "Hello World", ), }, { "my_crate::Bar": ( baz: 123, ), }, ], ), ] ``` However, this representation has some drawbacks (as pointed out by @Metadorius in [this](#4561 (comment)) comment): 1. Increased nesting and more characters (minor effect on overall size) 2. More importantly, by definition, entities cannot have more than one instance of any given component. Therefore, such data is best stored as a map— where all values are meant to have unique keys. ## Solution Change `components` to store a map of components rather than a list: ```rust [ ( entity: 0, components: { "bevy_transform::components::transform::Transform": ( translation: ( x: 0.0, y: 0.0, z: 0.0 ), rotation: (0.0, 0.0, 0.0, 1.0), scale: ( x: 1.0, y: 1.0, z: 1.0 ), ), "my_crate::Foo": ( text: "Hello World", ), "my_crate::Bar": ( baz: 123 ), }, ), ] ``` #### Code Representation This change only affects the scene format itself. `DynamicEntity` still stores its components as a list. The reason for this is that storing such data as a map is not really needed since: 1. The "key" of each value is easily found by just calling `Reflect::type_name` on it 2. We should be generating such structs using the `World` itself which upholds the one-component-per-entity rule One could in theory create manually create a `DynamicEntity` with duplicate components, but this isn't something I think we should focus on in this PR. `DynamicEntity` can be broken in other ways (i.e. storing a non-component in the components list), and resolving its issues can be done in a separate PR. --- ## Changelog * The scene format now uses a map to represent the collection of components rather than a list ## Migration Guide The scene format now uses a map to represent the collection of components. Scene files will need to update from the old list format. <details> <summary>Example Code</summary> ```rust // OLD [ ( entity: 0, components: [ { "bevy_transform::components::transform::Transform": ( translation: ( x: 0.0, y: 0.0, z: 0.0 ), rotation: (0.0, 0.0, 0.0, 1.0), scale: ( x: 1.0, y: 1.0, z: 1.0 ), ), }, { "my_crate::Foo": ( text: "Hello World", ), }, { "my_crate::Bar": ( baz: 123, ), }, ], ), ] // NEW [ ( entity: 0, components: { "bevy_transform::components::transform::Transform": ( translation: ( x: 0.0, y: 0.0, z: 0.0 ), rotation: (0.0, 0.0, 0.0, 1.0), scale: ( x: 1.0, y: 1.0, z: 1.0 ), ), "my_crate::Foo": ( text: "Hello World", ), "my_crate::Bar": ( baz: 123 ), }, ), ] ``` </details>
> Note: This is rebased off bevyengine#4561 and can be viewed as a competitor to that PR. See `Comparison with bevyengine#4561` section for details. # Objective The current serialization format used by `bevy_reflect` is both verbose and error-prone. Taking the following structs[^1] for example: ```rust // -- src/inventory.rs #[derive(Reflect)] struct Inventory { id: String, max_storage: usize, items: Vec<Item> } #[derive(Reflect)] struct Item { name: String } ``` Given an inventory of a single item, this would serialize to something like: ```rust // -- assets/inventory.ron { "type": "my_game::inventory::Inventory", "struct": { "id": { "type": "alloc::string::String", "value": "inv001", }, "max_storage": { "type": "usize", "value": 10 }, "items": { "type": "alloc::vec::Vec<alloc::string::String>", "list": [ { "type": "my_game::inventory::Item", "struct": { "name": { "type": "alloc::string::String", "value": "Pickaxe" }, }, }, ], }, }, } ``` Aside from being really long and difficult to read, it also has a few "gotchas" that users need to be aware of if they want to edit the file manually. A major one is the requirement that you use the proper keys for a given type. For structs, you need `"struct"`. For lists, `"list"`. For tuple structs, `"tuple_struct"`. And so on. It also ***requires*** that the `"type"` entry come before the actual data. Despite being a map— which in programming is almost always orderless by default— the entries need to be in a particular order. Failure to follow the ordering convention results in a failure to deserialize the data. This makes it very prone to errors and annoyances. ## Solution Using bevyengine#4042, we can remove a lot of the boilerplate and metadata needed by this older system. Since we now have static access to type information, we can simplify our serialized data to look like: ```rust // -- assets/inventory.ron { "my_game::inventory::Inventory": ( id: "inv001", max_storage: 10, items: [ ( name: "Pickaxe" ), ], ), } ``` This is much more digestible and a lot less error-prone (no more key requirements and no more extra type names). Additionally, it is a lot more familiar to users as it follows conventional serde mechanics. For example, the struct is represented with `(...)` when serialized to RON. #### Custom Serialization Additionally, this PR adds the opt-in ability to specify a custom serde implementation to be used rather than the one created via reflection. For example[^1]: ```rust // -- src/inventory.rs #[derive(Reflect, Serialize)] #[reflect(Serialize)] struct Item { #[serde(alias = "id")] name: String } ``` ```rust // -- assets/inventory.ron { "my_game::inventory::Inventory": ( id: "inv001", max_storage: 10, items: [ ( id: "Pickaxe" ), ], ), }, ``` By allowing users to define their own serialization methods, we do two things: 1. We give more control over how data is serialized/deserialized to the end user 2. We avoid having to re-define serde's attributes and forcing users to apply both (e.g. we don't need a `#[reflect(alias)]` attribute). ### Improved Formats One of the improvements this PR provides is the ability to represent data in ways that are more conventional and/or familiar to users. Many users are familiar with RON so here are some of the ways we can now represent data in RON: ###### Structs ```js { "my_crate::Foo": ( bar: 123 ) } // OR { "my_crate::Foo": Foo( bar: 123 ) } ``` <details> <summary>Old Format</summary> ```js { "type": "my_crate::Foo", "struct": { "bar": { "type": "usize", "value": 123 } } } ``` </details> ###### Tuples ```js { "(f32, f32)": (1.0, 2.0) } ``` <details> <summary>Old Format</summary> ```js { "type": "(f32, f32)", "tuple": [ { "type": "f32", "value": 1.0 }, { "type": "f32", "value": 2.0 } ] } ``` </details> ###### Tuple Structs ```js { "my_crate::Bar": ("Hello World!") } // OR { "my_crate::Bar": Bar("Hello World!") } ``` <details> <summary>Old Format</summary> ```js { "type": "my_crate::Bar", "tuple_struct": [ { "type": "alloc::string::String", "value": "Hello World!" } ] } ``` </details> ###### Arrays It may be a bit surprising to some, but arrays now also use the tuple format. This is because they essentially _are_ tuples (a sequence of values with a fixed size), but only allow for homogenous types. Additionally, this is how RON handles them and is probably a result of the 32-capacity limit imposed on them (both by [serde](https://docs.rs/serde/latest/serde/trait.Serialize.html#impl-Serialize-for-%5BT%3B%2032%5D) and by [bevy_reflect](https://docs.rs/bevy/latest/bevy/reflect/trait.GetTypeRegistration.html#impl-GetTypeRegistration-for-%5BT%3B%2032%5D)). ```js { "[i32; 3]": (1, 2, 3) } ``` <details> <summary>Old Format</summary> ```js { "type": "[i32; 3]", "array": [ { "type": "i32", "value": 1 }, { "type": "i32", "value": 2 }, { "type": "i32", "value": 3 } ] } ``` </details> ###### Enums To make things simple, I'll just put a struct variant here, but the style applies to all variant types: ```js { "my_crate::ItemType": Consumable( name: "Healing potion" ) } ``` <details> <summary>Old Format</summary> ```js { "type": "my_crate::ItemType", "enum": { "variant": "Consumable", "struct": { "name": { "type": "alloc::string::String", "value": "Healing potion" } } } } ``` </details> ### Comparison with bevyengine#4561 This PR is a rebased version of bevyengine#4561. The reason for the split between the two is because this PR creates a _very_ different scene format. You may notice that the PR descriptions for either PR are pretty similar. This was done to better convey the changes depending on which (if any) gets merged first. If bevyengine#4561 makes it in first, I will update this PR description accordingly. --- ## Changelog * Re-worked serialization/deserialization for reflected types * Added `TypedReflectDeserializer` for deserializing data with known `TypeInfo` * Renamed `ReflectDeserializer` to `UntypedReflectDeserializer` * ~~Replaced usages of `deserialize_any` with `deserialize_map` for non-self-describing formats~~ Reverted this change since there are still some issues that need to be sorted out (in a separate PR). By reverting this, crates like `bincode` can throw an error when attempting to deserialize non-self-describing formats (`bincode` results in `DeserializeAnyNotSupported`) * Structs, tuples, tuple structs, arrays, and enums are now all de/serialized using conventional serde methods ## Migration Guide * This PR reduces the verbosity of the scene format. Scenes will need to be updated accordingly: ```js // Old format { "type": "my_game::item::Item", "struct": { "id": { "type": "alloc::string::String", "value": "bevycraft:stone", }, "tags": { "type": "alloc::vec::Vec<alloc::string::String>", "list": [ { "type": "alloc::string::String", "value": "material" }, ], }, } // New format { "my_game::item::Item": ( id: "bevycraft:stone", tags: ["material"] ) } ``` [^1]: Some derives omitted for brevity.
# Objective Currently scenes define components using a list: ```rust [ ( entity: 0, components: [ { "bevy_transform::components::transform::Transform": ( translation: ( x: 0.0, y: 0.0, z: 0.0 ), rotation: (0.0, 0.0, 0.0, 1.0), scale: ( x: 1.0, y: 1.0, z: 1.0 ), ), }, { "my_crate::Foo": ( text: "Hello World", ), }, { "my_crate::Bar": ( baz: 123, ), }, ], ), ] ``` However, this representation has some drawbacks (as pointed out by @Metadorius in [this](bevyengine#4561 (comment)) comment): 1. Increased nesting and more characters (minor effect on overall size) 2. More importantly, by definition, entities cannot have more than one instance of any given component. Therefore, such data is best stored as a map— where all values are meant to have unique keys. ## Solution Change `components` to store a map of components rather than a list: ```rust [ ( entity: 0, components: { "bevy_transform::components::transform::Transform": ( translation: ( x: 0.0, y: 0.0, z: 0.0 ), rotation: (0.0, 0.0, 0.0, 1.0), scale: ( x: 1.0, y: 1.0, z: 1.0 ), ), "my_crate::Foo": ( text: "Hello World", ), "my_crate::Bar": ( baz: 123 ), }, ), ] ``` #### Code Representation This change only affects the scene format itself. `DynamicEntity` still stores its components as a list. The reason for this is that storing such data as a map is not really needed since: 1. The "key" of each value is easily found by just calling `Reflect::type_name` on it 2. We should be generating such structs using the `World` itself which upholds the one-component-per-entity rule One could in theory create manually create a `DynamicEntity` with duplicate components, but this isn't something I think we should focus on in this PR. `DynamicEntity` can be broken in other ways (i.e. storing a non-component in the components list), and resolving its issues can be done in a separate PR. --- ## Changelog * The scene format now uses a map to represent the collection of components rather than a list ## Migration Guide The scene format now uses a map to represent the collection of components. Scene files will need to update from the old list format. <details> <summary>Example Code</summary> ```rust // OLD [ ( entity: 0, components: [ { "bevy_transform::components::transform::Transform": ( translation: ( x: 0.0, y: 0.0, z: 0.0 ), rotation: (0.0, 0.0, 0.0, 1.0), scale: ( x: 1.0, y: 1.0, z: 1.0 ), ), }, { "my_crate::Foo": ( text: "Hello World", ), }, { "my_crate::Bar": ( baz: 123, ), }, ], ), ] // NEW [ ( entity: 0, components: { "bevy_transform::components::transform::Transform": ( translation: ( x: 0.0, y: 0.0, z: 0.0 ), rotation: (0.0, 0.0, 0.0, 1.0), scale: ( x: 1.0, y: 1.0, z: 1.0 ), ), "my_crate::Foo": ( text: "Hello World", ), "my_crate::Bar": ( baz: 123 ), }, ), ] ``` </details>
# Objective Fixes #6891 ## Solution Replaces deserializing map keys as `&str` with deserializing them as `String`. This bug seems to occur when using something like `File` or `BufReader` rather than bytes or a string directly (I only tested `File` and `BufReader` for `rmp-serde` and `serde_json`). This might be an issue with other `Read` impls as well (except `&[u8]` it seems). We already had passing tests for Message Pack but none that use a `File` or `BufReader`. This PR also adds or modifies tests to check for this in the future. This change was also based on [feedback](#4561 (comment)) I received in a previous PR. --- ## Changelog - Fix bug where scene deserialization using certain readers could fail (e.g. `BufReader`, `File`, etc.)
# Objective Fixes #6891 ## Solution Replaces deserializing map keys as `&str` with deserializing them as `String`. This bug seems to occur when using something like `File` or `BufReader` rather than bytes or a string directly (I only tested `File` and `BufReader` for `rmp-serde` and `serde_json`). This might be an issue with other `Read` impls as well (except `&[u8]` it seems). We already had passing tests for Message Pack but none that use a `File` or `BufReader`. This PR also adds or modifies tests to check for this in the future. This change was also based on [feedback](#4561 (comment)) I received in a previous PR. --- ## Changelog - Fix bug where scene deserialization using certain readers could fail (e.g. `BufReader`, `File`, etc.)
# Objective Fixes bevyengine#6891 ## Solution Replaces deserializing map keys as `&str` with deserializing them as `String`. This bug seems to occur when using something like `File` or `BufReader` rather than bytes or a string directly (I only tested `File` and `BufReader` for `rmp-serde` and `serde_json`). This might be an issue with other `Read` impls as well (except `&[u8]` it seems). We already had passing tests for Message Pack but none that use a `File` or `BufReader`. This PR also adds or modifies tests to check for this in the future. This change was also based on [feedback](bevyengine#4561 (comment)) I received in a previous PR. --- ## Changelog - Fix bug where scene deserialization using certain readers could fail (e.g. `BufReader`, `File`, etc.)
> Note: This is rebased off bevyengine#4561 and can be viewed as a competitor to that PR. See `Comparison with bevyengine#4561` section for details. # Objective The current serialization format used by `bevy_reflect` is both verbose and error-prone. Taking the following structs[^1] for example: ```rust // -- src/inventory.rs #[derive(Reflect)] struct Inventory { id: String, max_storage: usize, items: Vec<Item> } #[derive(Reflect)] struct Item { name: String } ``` Given an inventory of a single item, this would serialize to something like: ```rust // -- assets/inventory.ron { "type": "my_game::inventory::Inventory", "struct": { "id": { "type": "alloc::string::String", "value": "inv001", }, "max_storage": { "type": "usize", "value": 10 }, "items": { "type": "alloc::vec::Vec<alloc::string::String>", "list": [ { "type": "my_game::inventory::Item", "struct": { "name": { "type": "alloc::string::String", "value": "Pickaxe" }, }, }, ], }, }, } ``` Aside from being really long and difficult to read, it also has a few "gotchas" that users need to be aware of if they want to edit the file manually. A major one is the requirement that you use the proper keys for a given type. For structs, you need `"struct"`. For lists, `"list"`. For tuple structs, `"tuple_struct"`. And so on. It also ***requires*** that the `"type"` entry come before the actual data. Despite being a map— which in programming is almost always orderless by default— the entries need to be in a particular order. Failure to follow the ordering convention results in a failure to deserialize the data. This makes it very prone to errors and annoyances. ## Solution Using bevyengine#4042, we can remove a lot of the boilerplate and metadata needed by this older system. Since we now have static access to type information, we can simplify our serialized data to look like: ```rust // -- assets/inventory.ron { "my_game::inventory::Inventory": ( id: "inv001", max_storage: 10, items: [ ( name: "Pickaxe" ), ], ), } ``` This is much more digestible and a lot less error-prone (no more key requirements and no more extra type names). Additionally, it is a lot more familiar to users as it follows conventional serde mechanics. For example, the struct is represented with `(...)` when serialized to RON. #### Custom Serialization Additionally, this PR adds the opt-in ability to specify a custom serde implementation to be used rather than the one created via reflection. For example[^1]: ```rust // -- src/inventory.rs #[derive(Reflect, Serialize)] #[reflect(Serialize)] struct Item { #[serde(alias = "id")] name: String } ``` ```rust // -- assets/inventory.ron { "my_game::inventory::Inventory": ( id: "inv001", max_storage: 10, items: [ ( id: "Pickaxe" ), ], ), }, ``` By allowing users to define their own serialization methods, we do two things: 1. We give more control over how data is serialized/deserialized to the end user 2. We avoid having to re-define serde's attributes and forcing users to apply both (e.g. we don't need a `#[reflect(alias)]` attribute). ### Improved Formats One of the improvements this PR provides is the ability to represent data in ways that are more conventional and/or familiar to users. Many users are familiar with RON so here are some of the ways we can now represent data in RON: ###### Structs ```js { "my_crate::Foo": ( bar: 123 ) } // OR { "my_crate::Foo": Foo( bar: 123 ) } ``` <details> <summary>Old Format</summary> ```js { "type": "my_crate::Foo", "struct": { "bar": { "type": "usize", "value": 123 } } } ``` </details> ###### Tuples ```js { "(f32, f32)": (1.0, 2.0) } ``` <details> <summary>Old Format</summary> ```js { "type": "(f32, f32)", "tuple": [ { "type": "f32", "value": 1.0 }, { "type": "f32", "value": 2.0 } ] } ``` </details> ###### Tuple Structs ```js { "my_crate::Bar": ("Hello World!") } // OR { "my_crate::Bar": Bar("Hello World!") } ``` <details> <summary>Old Format</summary> ```js { "type": "my_crate::Bar", "tuple_struct": [ { "type": "alloc::string::String", "value": "Hello World!" } ] } ``` </details> ###### Arrays It may be a bit surprising to some, but arrays now also use the tuple format. This is because they essentially _are_ tuples (a sequence of values with a fixed size), but only allow for homogenous types. Additionally, this is how RON handles them and is probably a result of the 32-capacity limit imposed on them (both by [serde](https://docs.rs/serde/latest/serde/trait.Serialize.html#impl-Serialize-for-%5BT%3B%2032%5D) and by [bevy_reflect](https://docs.rs/bevy/latest/bevy/reflect/trait.GetTypeRegistration.html#impl-GetTypeRegistration-for-%5BT%3B%2032%5D)). ```js { "[i32; 3]": (1, 2, 3) } ``` <details> <summary>Old Format</summary> ```js { "type": "[i32; 3]", "array": [ { "type": "i32", "value": 1 }, { "type": "i32", "value": 2 }, { "type": "i32", "value": 3 } ] } ``` </details> ###### Enums To make things simple, I'll just put a struct variant here, but the style applies to all variant types: ```js { "my_crate::ItemType": Consumable( name: "Healing potion" ) } ``` <details> <summary>Old Format</summary> ```js { "type": "my_crate::ItemType", "enum": { "variant": "Consumable", "struct": { "name": { "type": "alloc::string::String", "value": "Healing potion" } } } } ``` </details> ### Comparison with bevyengine#4561 This PR is a rebased version of bevyengine#4561. The reason for the split between the two is because this PR creates a _very_ different scene format. You may notice that the PR descriptions for either PR are pretty similar. This was done to better convey the changes depending on which (if any) gets merged first. If bevyengine#4561 makes it in first, I will update this PR description accordingly. --- ## Changelog * Re-worked serialization/deserialization for reflected types * Added `TypedReflectDeserializer` for deserializing data with known `TypeInfo` * Renamed `ReflectDeserializer` to `UntypedReflectDeserializer` * ~~Replaced usages of `deserialize_any` with `deserialize_map` for non-self-describing formats~~ Reverted this change since there are still some issues that need to be sorted out (in a separate PR). By reverting this, crates like `bincode` can throw an error when attempting to deserialize non-self-describing formats (`bincode` results in `DeserializeAnyNotSupported`) * Structs, tuples, tuple structs, arrays, and enums are now all de/serialized using conventional serde methods ## Migration Guide * This PR reduces the verbosity of the scene format. Scenes will need to be updated accordingly: ```js // Old format { "type": "my_game::item::Item", "struct": { "id": { "type": "alloc::string::String", "value": "bevycraft:stone", }, "tags": { "type": "alloc::vec::Vec<alloc::string::String>", "list": [ { "type": "alloc::string::String", "value": "material" }, ], }, } // New format { "my_game::item::Item": ( id: "bevycraft:stone", tags: ["material"] ) } ``` [^1]: Some derives omitted for brevity.
# Objective Currently scenes define components using a list: ```rust [ ( entity: 0, components: [ { "bevy_transform::components::transform::Transform": ( translation: ( x: 0.0, y: 0.0, z: 0.0 ), rotation: (0.0, 0.0, 0.0, 1.0), scale: ( x: 1.0, y: 1.0, z: 1.0 ), ), }, { "my_crate::Foo": ( text: "Hello World", ), }, { "my_crate::Bar": ( baz: 123, ), }, ], ), ] ``` However, this representation has some drawbacks (as pointed out by @Metadorius in [this](bevyengine#4561 (comment)) comment): 1. Increased nesting and more characters (minor effect on overall size) 2. More importantly, by definition, entities cannot have more than one instance of any given component. Therefore, such data is best stored as a map— where all values are meant to have unique keys. ## Solution Change `components` to store a map of components rather than a list: ```rust [ ( entity: 0, components: { "bevy_transform::components::transform::Transform": ( translation: ( x: 0.0, y: 0.0, z: 0.0 ), rotation: (0.0, 0.0, 0.0, 1.0), scale: ( x: 1.0, y: 1.0, z: 1.0 ), ), "my_crate::Foo": ( text: "Hello World", ), "my_crate::Bar": ( baz: 123 ), }, ), ] ``` #### Code Representation This change only affects the scene format itself. `DynamicEntity` still stores its components as a list. The reason for this is that storing such data as a map is not really needed since: 1. The "key" of each value is easily found by just calling `Reflect::type_name` on it 2. We should be generating such structs using the `World` itself which upholds the one-component-per-entity rule One could in theory create manually create a `DynamicEntity` with duplicate components, but this isn't something I think we should focus on in this PR. `DynamicEntity` can be broken in other ways (i.e. storing a non-component in the components list), and resolving its issues can be done in a separate PR. --- ## Changelog * The scene format now uses a map to represent the collection of components rather than a list ## Migration Guide The scene format now uses a map to represent the collection of components. Scene files will need to update from the old list format. <details> <summary>Example Code</summary> ```rust // OLD [ ( entity: 0, components: [ { "bevy_transform::components::transform::Transform": ( translation: ( x: 0.0, y: 0.0, z: 0.0 ), rotation: (0.0, 0.0, 0.0, 1.0), scale: ( x: 1.0, y: 1.0, z: 1.0 ), ), }, { "my_crate::Foo": ( text: "Hello World", ), }, { "my_crate::Bar": ( baz: 123, ), }, ], ), ] // NEW [ ( entity: 0, components: { "bevy_transform::components::transform::Transform": ( translation: ( x: 0.0, y: 0.0, z: 0.0 ), rotation: (0.0, 0.0, 0.0, 1.0), scale: ( x: 1.0, y: 1.0, z: 1.0 ), ), "my_crate::Foo": ( text: "Hello World", ), "my_crate::Bar": ( baz: 123 ), }, ), ] ``` </details>
# Objective Fixes bevyengine#6891 ## Solution Replaces deserializing map keys as `&str` with deserializing them as `String`. This bug seems to occur when using something like `File` or `BufReader` rather than bytes or a string directly (I only tested `File` and `BufReader` for `rmp-serde` and `serde_json`). This might be an issue with other `Read` impls as well (except `&[u8]` it seems). We already had passing tests for Message Pack but none that use a `File` or `BufReader`. This PR also adds or modifies tests to check for this in the future. This change was also based on [feedback](bevyengine#4561 (comment)) I received in a previous PR. --- ## Changelog - Fix bug where scene deserialization using certain readers could fail (e.g. `BufReader`, `File`, etc.)
Objective
The current serialization format used by
bevy_reflect
is both verbose and error-prone. Taking the following structs1 for example:Given an inventory of a single item, this would serialize to something like:
Aside from being really long and difficult to read, it also has a few "gotchas" that users need to be aware of if they want to edit the file manually. A major one is the requirement that you use the proper keys for a given type. For structs, you need
"struct"
. For lists,"list"
. For tuple structs,"tuple_struct"
. And so on.It also requires that the
"type"
entry come before the actual data. Despite being a map— which in programming is almost always orderless by default— the entries need to be in a particular order. Failure to follow the ordering convention results in a failure to deserialize the data.This makes it very prone to errors and annoyances.
Solution
Using #4042, we can remove a lot of the boilerplate and metadata needed by this older system. Since we now have static access to type information, we can simplify our serialized data to look like:
This is much more digestible and a lot less error-prone (no more key requirements and no more extra type names).
Custom Serialization
Additionally, this PR adds the opt-in ability to specify a custom serde implementation to be used rather than the one created via reflection. For example1:
Because we specified a custom
Serialize
implementation with#[reflect(Serialize)]
, we actually get the RON-style syntax for a struct.By allowing users to define their own serialization methods, we do two things:
#[reflect(alias)]
attribute).Tuples!
Tuples and tuple-likes now use serde's
de/serialize_tuple
method. This provides better semantics— being fixed-size sequences, we should be able to indicate that size at when de/serializing. It also addresses some of serde's own limitations (see sections below).Tuples
Obviously, tuples now use this format. This is better because tuples do have a maximum size according to serde. I don't think we actually run into this limitation, but it's a good reminder to avoid large tuples in case we want to be compatible with other formats.
Old Format
Tuple Structs
This also applies to tuple structs. Though, it should be noted that there is a dedicated
de/serialize_tuple_struct
method in serde. However, it requires a static name, which is not yet provided byTypeInfo
. Even if it was, we have no way of handlingDynamic***
types (see bevyengine/rfcs#56).Old Format
Arrays
It may be a bit surprising to some, but arrays now also use the tuple format. This is because they essentially are tuples (a sequence of values with a fixed size), but only allow for homogenous types. Additionally, this is how RON handles them and is probably a result of the 32-capacity limit imposed on them (both by serde and by bevy_reflect).
Old Format
Changelog
TypedReflectDeserializer
for deserializing data with knownTypeInfo
ReflectDeserializer
toUntypedReflectDeserializer
Replaced usages ofReverted this change since there are still some issues that need to be sorted out (in a separate PR). By reverting this, crates likedeserialize_any
withdeserialize_map
for non-self-describing formatsbincode
can throw an error when attempting to deserialize non-self-describing formats (bincode
results inDeserializeAnyNotSupported
)Migration Guide
ReflectDeserializer
has been renamed toUntypedReflectDeserializer
Footnotes
Some derives omitted for brevity. ↩ ↩2