Skip to content
This repository has been archived by the owner on Nov 17, 2023. It is now read-only.

Fix image classification scripts and Improve Fp16 tutorial #11533

Merged
merged 11 commits into from
Jul 29, 2018
12 changes: 10 additions & 2 deletions docs/faq/float16.md
Original file line number Diff line number Diff line change
Expand Up @@ -102,9 +102,17 @@ python fine-tune.py --network resnet --num-layers 50 --pretrained-model imagenet
```

## Example training results
Here is a plot to compare the training curves of a Resnet50 v1 network on the Imagenet 2012 dataset. These training jobs ran for 95 epochs with a batch size of 1024 using a learning rate of 0.4 decayed by a factor of 1 at epochs 30,60,90 and used Gluon. The only changes made for the float16 job when compared to the float32 job were that the network and data were cast to float16, and the multi-precision mode was used for optimizer. The final accuracies at 95th epoch were **76.598% for float16** and **76.486% for float32**. The difference is within what's normal random variation, and there is no reason to expect float16 to have better accuracy than float32 in general. This run was approximately **65% faster** to train with float16.
Let us consider training a Resnet50 v1 model on the Imagenet 2012 dataset. For this model, the GPU memory usage is close to the capacity of V100 GPU with a batch size of 128 when using float32. Using float16 allows the use of 256 batch size. Shared below are results using 8 V100 GPUs on a AWS p3.16x large instance. Let us compare the three scenarios that arise here: float32 with 1024 batch size, float16 with 1024 batch size and float16 with 2048 batch size. These jobs trained for 90 epochs using a learning rate of 0.4 for 1024 batch size and 0.8 for 2048 batch size. This learning rate was decayed by a factor of 0.1 at the 30th, 60th and 80th epochs. The only changes made for the float16 jobs when compared to the float32 job were that the network and data were cast to float16, and the multi-precision mode was used for optimizer. The final accuracy at 90th epoch and the time to train are tabulated below for these three scenarios. The top-1 validation errors at the end of each epoch are also plotted below.

![Training curves of Resnet50 v1 on Imagenet 2012](https://raw.githubusercontent.com/rahul003/web-data/03929a8beb8ac574f2392ed34cc6d4b2f052826a/mxnet/tutorials/mixed-precision/resnet50v1b_imagenet_fp16_fp32_training.png)
Batch size | Data type | Top 1 Validation accuracy | Time to train | Speedup |
--- | --- | --- | --- | --- |
1024 | float32 | 76.18% | 11.8 hrs | 1 |
1024 | float16 | 76.34% | 7.3 hrs | 1.62x |
2048 | float16 | 76.29% | 6.5 hrs | 1.82x |

![Training curves of Resnet50 v1 on Imagenet 2012](https://raw.githubusercontent.com/dmlc/web-data/master/mxnet/tutorials/mixed-precision/resnet50v1b_imagenet_fp16_fp32_training.png)

The differences in accuracies above are within normal random variation, and there is no reason to expect float16 to have better accuracy than float32 in general. As the plot indicates training behaves similarly for these cases, even though we didn't have to change any other hyperparameters. We can also see from the table that using float16 helps train faster through faster computation with float16 as well as allowing the use of larger batch sizes.

## Things to keep in mind

Expand Down
15 changes: 8 additions & 7 deletions example/gluon/data.py
Original file line number Diff line number Diff line change
Expand Up @@ -21,6 +21,7 @@
import random
import tarfile
import logging
import tarfile
logging.basicConfig(level=logging.INFO)

import mxnet as mx
Expand Down Expand Up @@ -92,9 +93,10 @@ def get_imagenet_iterator(root, batch_size, num_workers, data_shape=224, dtype='
def get_caltech101_data():
url = "https://s3.us-east-2.amazonaws.com/mxnet-public/101_ObjectCategories.tar.gz"
dataset_name = "101_ObjectCategories"
if not os.path.isdir("data"):
data_folder = "data"
if not os.path.isdir(data_folder):
os.makedirs(data_folder)
tar_path = mx.gluon.utils.download(url, path='data')
tar_path = mx.gluon.utils.download(url, path=data_folder)
if (not os.path.isdir(os.path.join(data_folder, "101_ObjectCategories")) or
not os.path.isdir(os.path.join(data_folder, "101_ObjectCategories_test"))):
tar = tarfile.open(tar_path, "r:gz")
Expand All @@ -110,18 +112,17 @@ def transform(image, label):
# resize the shorter edge to 224, the longer edge will be greater or equal to 224
resized = mx.image.resize_short(image, 224)
# center and crop an area of size (224,224)
cropped, crop_info = mx.image.center_crop(resized, 224)
cropped, crop_info = mx.image.center_crop(resized, (224, 224))
# transpose the channels to be (3,224,224)
transposed = mx.nd.transpose(cropped, (2, 0, 1))
image = mx.nd.cast(image, dtype)
return image, label
return transposed, label

training_path, testing_path = get_caltech101_data()
dataset_train = ImageFolderDataset(root=training_path, transform=transform)
dataset_test = ImageFolderDataset(root=testing_path, transform=transform)

train_data = mx.gluon.data.DataLoader(dataset_train, batch_size, shuffle=True, num_workers=num_workers)
test_data = mx.gluon.data.DataLoader(dataset_test, batch_size, shuffle=False, num_workers=num_workers)
train_data = DataLoader(dataset_train, batch_size, shuffle=True, num_workers=num_workers)
test_data = DataLoader(dataset_test, batch_size, shuffle=False, num_workers=num_workers)
return DataLoaderIter(train_data), DataLoaderIter(test_data)

class DummyIter(mx.io.DataIter):
Expand Down
9 changes: 6 additions & 3 deletions example/image-classification/benchmark_score.py
Original file line number Diff line number Diff line change
Expand Up @@ -79,13 +79,16 @@ def score(network, dev, batch_size, num_batches, dtype):
logging.info('network: %s', net)
for d in devs:
logging.info('device: %s', d)
logged_fp16_warning = False
for b in batch_sizes:
for dtype in ['float32', 'float16']:
if d == mx.cpu() and dtype == 'float16':
#float16 is not supported on CPU
continue
elif net in ['inception-bn', 'alexnet'] and dt == 'float16':
logging.info('{} does not support float16'.format(net))
elif net in ['inception-bn', 'alexnet'] and dtype == 'float16':
if not logged_fp16_warning:
logging.info('Model definition for {} does not support float16'.format(net))
logged_fp16_warning = True
else:
speed = score(network=net, dev=d, batch_size=b, num_batches=10, dtype=dtype)
logging.info('batch size %2d, dtype %s image/sec: %f', b, dtype, speed)
logging.info('batch size %2d, dtype %s, images/sec: %f', b, dtype, speed)
31 changes: 22 additions & 9 deletions example/image-classification/common/data.py
Original file line number Diff line number Diff line change
Expand Up @@ -28,8 +28,12 @@ def add_data_args(parser):
data.add_argument('--data-val-idx', type=str, default='', help='the index of validation data')
data.add_argument('--rgb-mean', type=str, default='123.68,116.779,103.939',
help='a tuple of size 3 for the mean rgb')
data.add_argument('--rgb-std', type=str, default='1,1,1',
help='a tuple of size 3 for the std rgb')
data.add_argument('--pad-size', type=int, default=0,
help='padding the input image')
data.add_argument('--fill-value', type=int, default=127,
help='Set the padding pixels value to fill_value')
data.add_argument('--image-shape', type=str,
help='the image shape feed into the network, e.g. (3,224,224)')
data.add_argument('--num-classes', type=int, help='the number of classes')
Expand Down Expand Up @@ -67,11 +71,18 @@ def add_data_aug_args(parser):
aug.add_argument('--max-random-scale', type=float, default=1,
help='max ratio to scale')
aug.add_argument('--min-random-scale', type=float, default=1,
help='min ratio to scale, should >= img_size/input_shape. otherwise use --pad-size')
help='min ratio to scale, should >= img_size/input_shape. '
'otherwise use --pad-size')
aug.add_argument('--max-random-area', type=float, default=1,
help='max area to crop in random resized crop, whose range is [0, 1]')
aug.add_argument('--min-random-area', type=float, default=1,
help='min area to crop in random resized crop, whose range is [0, 1]')
aug.add_argument('--min-crop-size', type=int, default=-1,
help='Crop both width and height into a random size in '
'[min_crop_size, max_crop_size]')
aug.add_argument('--max-crop-size', type=int, default=-1,
help='Crop both width and height into a random size in '
'[min_crop_size, max_crop_size]')
aug.add_argument('--brightness', type=float, default=0,
help='brightness jittering, whose range is [0, 1]')
aug.add_argument('--contrast', type=float, default=0,
Expand All @@ -84,13 +95,6 @@ def add_data_aug_args(parser):
help='whether to use random resized crop')
return aug

def set_resnet_aug(aug):
# standard data augmentation setting for resnet training
aug.set_defaults(random_crop=0, random_resized_crop=1)
aug.set_defaults(min_random_area=0.08)
aug.set_defaults(max_random_aspect_ratio=4./3., min_random_aspect_ratio=3./4.)
aug.set_defaults(brightness=0.4, contrast=0.4, saturation=0.4, pca_noise=0.1)

class SyntheticDataIter(DataIter):
def __init__(self, num_classes, data_shape, max_iter, dtype):
self.batch_size = data_shape[0]
Expand Down Expand Up @@ -137,27 +141,33 @@ def get_rec_iter(args, kv=None):
else:
(rank, nworker) = (0, 1)
rgb_mean = [float(i) for i in args.rgb_mean.split(',')]
rgb_std = [float(i) for i in args.rgb_std.split(',')]
train = mx.io.ImageRecordIter(
path_imgrec = args.data_train,
path_imgidx = args.data_train_idx,
label_width = 1,
mean_r = rgb_mean[0],
mean_g = rgb_mean[1],
mean_b = rgb_mean[2],
std_r = rgb_std[0],
std_g = rgb_std[1],
std_b = rgb_std[2],
data_name = 'data',
label_name = 'softmax_label',
data_shape = image_shape,
batch_size = args.batch_size,
rand_crop = args.random_crop,
max_random_scale = args.max_random_scale,
pad = args.pad_size,
fill_value = 127,
fill_value = args.fill_value,
random_resized_crop = args.random_resized_crop,
min_random_scale = args.min_random_scale,
max_aspect_ratio = args.max_random_aspect_ratio,
min_aspect_ratio = args.min_random_aspect_ratio,
max_random_area = args.max_random_area,
min_random_area = args.min_random_area,
min_crop_size = args.min_crop_size,
max_crop_size = args.max_crop_size,
brightness = args.brightness,
contrast = args.contrast,
saturation = args.saturation,
Expand All @@ -181,6 +191,9 @@ def get_rec_iter(args, kv=None):
mean_r = rgb_mean[0],
mean_g = rgb_mean[1],
mean_b = rgb_mean[2],
std_r = rgb_std[0],
std_g = rgb_std[1],
std_b = rgb_std[2],
resize = 256,
data_name = 'data',
label_name = 'softmax_label',
Expand Down
4 changes: 2 additions & 2 deletions example/image-classification/fine-tune.py
Original file line number Diff line number Diff line change
Expand Up @@ -54,8 +54,8 @@ def get_fine_tune_model(symbol, arg_params, num_classes, layer_name, dtype='floa
parser.add_argument('--layer-before-fullc', type=str, default='flatten0',
help='the name of the layer before the last fullc layer')\

# use less augmentations for fine-tune
data.set_data_aug_level(parser, 1)
# use less augmentations for fine-tune. by default here it uses no augmentations

# use a small learning rate and less regularizations
parser.set_defaults(image_shape='3,224,224',
num_epochs=30,
Expand Down
8 changes: 7 additions & 1 deletion example/image-classification/train_cifar10.py
Original file line number Diff line number Diff line change
Expand Up @@ -31,6 +31,11 @@ def download_cifar10():
download_file('http://data.mxnet.io/data/cifar10/cifar10_train.rec', fnames[0])
return fnames

def set_cifar_aug(aug):
aug.set_defaults(rgb_mean='125.307,122.961,113.8575', rgb_std='51.5865,50.847,51.255')
aug.set_defaults(random_mirror=1, pad=4, fill_value=0, random_crop=1)
aug.set_defaults(min_random_size=32, max_random_size=32)

if __name__ == '__main__':
# download data
(train_fname, val_fname) = download_cifar10()
Expand All @@ -41,7 +46,8 @@ def download_cifar10():
fit.add_fit_args(parser)
data.add_data_args(parser)
data.add_data_aug_args(parser)
data.set_data_aug_level(parser, 2)
# uncomment to set standard cifar augmentations
# set_cifar_aug(parser)
parser.set_defaults(
# network
network = 'resnet',
Expand Down
12 changes: 10 additions & 2 deletions example/image-classification/train_imagenet.py
Original file line number Diff line number Diff line change
Expand Up @@ -23,15 +23,23 @@
from common.util import download_file
import mxnet as mx

def set_imagenet_aug(aug):
# standard data augmentation setting for imagenet training
aug.set_defaults(rgb_mean='123.68,116.779,103.939', rgb_std='58.393,57.12,57.375')
aug.set_defaults(random_crop=0, random_resized_crop=1, random_mirror=1)
aug.set_defaults(min_random_area=0.08)
aug.set_defaults(max_random_aspect_ratio=4./3., min_random_aspect_ratio=3./4.)
aug.set_defaults(brightness=0.4, contrast=0.4, saturation=0.4, pca_noise=0.1)

if __name__ == '__main__':
# parse args
parser = argparse.ArgumentParser(description="train imagenet-1k",
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
fit.add_fit_args(parser)
data.add_data_args(parser)
data.add_data_aug_args(parser)
# uncomment to set standard augmentation for resnet training
# data.set_resnet_aug(parser)
# uncomment to set standard augmentations for imagenet training
# set_imagenet_aug(parser)
parser.set_defaults(
# network
network = 'resnet',
Expand Down
2 changes: 1 addition & 1 deletion src/io/image_aug_default.cc
Original file line number Diff line number Diff line change
Expand Up @@ -178,7 +178,7 @@ struct DefaultImageAugmentParam : public dmlc::Parameter<DefaultImageAugmentPara
DMLC_DECLARE_FIELD(rotate).set_default(-1.0f)
.describe("Rotate by an angle. If set, it overwrites the ``max_rotate_angle`` option.");
DMLC_DECLARE_FIELD(fill_value).set_default(255)
.describe("Set the padding pixes value into ``fill_value``.");
.describe("Set the padding pixels value to ``fill_value``.");
DMLC_DECLARE_FIELD(data_shape)
.set_expect_ndim(3).enforce_nonzero()
.describe("The shape of a output image.");
Expand Down