Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

feat(function): add least function #13786

Merged
merged 17 commits into from
Dec 20, 2024
Merged
Show file tree
Hide file tree
Changes from 11 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion datafusion/functions/src/core/greatest.rs
Original file line number Diff line number Diff line change
Expand Up @@ -177,7 +177,7 @@ impl ScalarUDFImpl for GreatestFunc {

let mut largest: ArrayRef;

// Optimization: merge all scalars into one to avoid recomputing
// Optimization: merge all scalars into one to avoid recomputing (constant folding)
if !scalars.is_empty() {
let mut scalars_iter = scalars.iter().map(|x| match x {
ColumnarValue::Scalar(s) => s,
Expand Down
283 changes: 283 additions & 0 deletions datafusion/functions/src/core/least.rs
Original file line number Diff line number Diff line change
@@ -0,0 +1,283 @@
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.

use arrow::array::{make_comparator, Array, ArrayRef, BooleanArray};
use arrow::compute::kernels::cmp;
use arrow::compute::kernels::zip::zip;
use arrow::compute::SortOptions;
use arrow::datatypes::DataType;
use arrow_buffer::BooleanBuffer;
use datafusion_common::{exec_err, plan_err, Result, ScalarValue};
use datafusion_doc::Documentation;
use datafusion_expr::binary::type_union_resolution;
use datafusion_expr::scalar_doc_sections::DOC_SECTION_CONDITIONAL;
use datafusion_expr::ColumnarValue;
use datafusion_expr::{ScalarUDFImpl, Signature, Volatility};
use std::any::Any;
use std::sync::{Arc, OnceLock};

const SORT_OPTIONS: SortOptions = SortOptions {
// Having the smallest result first
descending: false,

// NULL will be greater than any other value
nulls_first: false,
};

#[derive(Debug)]
pub struct LeastFunc {
signature: Signature,
}

impl Default for LeastFunc {
fn default() -> Self {
LeastFunc::new()
}
}

impl LeastFunc {
pub fn new() -> Self {
Self {
signature: Signature::user_defined(Volatility::Immutable),
}
}
}

fn get_logical_null_count(arr: &dyn Array) -> usize {
rluvaton marked this conversation as resolved.
Show resolved Hide resolved
arr.logical_nulls()
.map(|n| n.null_count())
.unwrap_or_default()
}

/// Return boolean array where `arr[i] = lhs[i] <= rhs[i]` for all i, where `arr` is the result array
/// Nulls are always considered larger than any other value
fn get_smallest(lhs: &dyn Array, rhs: &dyn Array) -> Result<BooleanArray> {
// Fast path:
// If both arrays are not nested, have the same length and no nulls, we can use the faster vectorised kernel
// - If both arrays are not nested: Nested types, such as lists, are not supported as the null semantics are not well-defined.
// - both array does not have any nulls: cmp::lt_eq will return null if any of the input is null while we want to return false in that case
if !lhs.data_type().is_nested()
&& get_logical_null_count(lhs) == 0
&& get_logical_null_count(rhs) == 0
{
return cmp::lt_eq(&lhs, &rhs).map_err(|e| e.into());
}

let cmp = make_comparator(lhs, rhs, SORT_OPTIONS)?;

if lhs.len() != rhs.len() {
return exec_err!("All arrays should have the same length for least comparison");
}
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

I suggest to use debug_assert, given it's a simple invariant check

Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

internal_err also would be appropriate to signal that this is not an expected error

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

used internal_error


let values = BooleanBuffer::collect_bool(lhs.len(), |i| cmp(i, i).is_le());

// No nulls as we only want to keep the values that are smaller, its either true or false
Ok(BooleanArray::new(values, None))
}

/// Return array where the smallest value at each index is kept
fn keep_smallest(lhs: ArrayRef, rhs: ArrayRef) -> Result<ArrayRef> {
// True for values that we should keep from the left array
let keep_lhs = get_smallest(lhs.as_ref(), rhs.as_ref())?;

let smaller = zip(&keep_lhs, &lhs, &rhs)?;

Ok(smaller)
}

fn keep_smaller_scalar<'a>(
lhs: &'a ScalarValue,
rhs: &'a ScalarValue,
) -> Result<&'a ScalarValue> {
// Manual checking for nulls as:
// 1. If we're going to use <=, in Rust None is smaller than Some(T), which we don't want
// 2. And we can't use make_comparator as it has no natural order (Arrow error)
if lhs.is_null() {
return Ok(rhs);
}

if rhs.is_null() {
return Ok(lhs);
}

if !lhs.data_type().is_nested() {
return if lhs <= rhs { Ok(lhs) } else { Ok(rhs) };
}

// Not using <= as in Rust None is smaller than Some(T)

// If complex type we can't compare directly as we want null values to be larger
let cmp = make_comparator(
lhs.to_array()?.as_ref(),
rhs.to_array()?.as_ref(),
SORT_OPTIONS,
)?;

if cmp(0, 0).is_le() {
Ok(lhs)
} else {
Ok(rhs)
}
}

fn find_coerced_type(data_types: &[DataType]) -> Result<DataType> {
if data_types.is_empty() {
plan_err!("least was called without any arguments. It requires at least 1.")
} else if let Some(coerced_type) = type_union_resolution(data_types) {
Ok(coerced_type)
} else {
plan_err!("Cannot find a common type for arguments")
}
}

impl ScalarUDFImpl for LeastFunc {
fn as_any(&self) -> &dyn Any {
self
}

fn name(&self) -> &str {
"least"
}

fn signature(&self) -> &Signature {
&self.signature
}

fn return_type(&self, arg_types: &[DataType]) -> Result<DataType> {
Ok(arg_types[0].clone())
}

fn invoke(&self, args: &[ColumnarValue]) -> Result<ColumnarValue> {
if args.is_empty() {
return exec_err!(
rluvaton marked this conversation as resolved.
Show resolved Hide resolved
"least was called with no arguments. It requires at least 1."
);
}

// Some engines (e.g. SQL Server) allow least with single arg, it's a noop
if args.len() == 1 {
return Ok(args[0].clone());
}

// Split to scalars and arrays for later optimization (constant folding)
let (scalars, arrays): (Vec<_>, Vec<_>) = args.iter().partition(|x| match x {
ColumnarValue::Scalar(_) => true,
ColumnarValue::Array(_) => false,
});

let mut arrays_iter = arrays.iter().map(|x| match x {
ColumnarValue::Array(a) => a,
_ => unreachable!(),
});

let first_array = arrays_iter.next();

let mut smallest: ArrayRef;

// Optimization: merge all scalars into one to avoid recomputing (constant folding)
if !scalars.is_empty() {
let mut scalars_iter = scalars.iter().map(|x| match x {
ColumnarValue::Scalar(s) => s,
_ => unreachable!(),
});

// We have at least one scalar
let mut smallest_scalar = scalars_iter.next().unwrap();

for scalar in scalars_iter {
smallest_scalar = keep_smaller_scalar(smallest_scalar, scalar)?;
}

// If we only have scalars, return the smaller one
if arrays.is_empty() {
return Ok(ColumnarValue::Scalar(smallest_scalar.clone()));
}

// We have at least one array
let first_array = first_array.unwrap();

// Start with the smaller value
smallest = keep_smallest(
Arc::clone(first_array),
smallest_scalar.to_array_of_size(first_array.len())?,
)?;
} else {
// If we only have arrays, start with the first array
// (We must have at least one array)
smallest = Arc::clone(first_array.unwrap());
}

for array in arrays_iter {
smallest = keep_smallest(Arc::clone(array), smallest)?;
}
Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

@waynexia this is the same as the greatest, see why #12474 (comment)


Ok(ColumnarValue::Array(smallest))
}

fn coerce_types(&self, arg_types: &[DataType]) -> Result<Vec<DataType>> {
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

It's possible to reuse greatest's implementation here

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

merged implementation with greatest

let coerced_type = find_coerced_type(arg_types)?;

Ok(vec![coerced_type; arg_types.len()])
}

fn documentation(&self) -> Option<&Documentation> {
Some(get_smallest_doc())
}
}
static DOCUMENTATION: OnceLock<Documentation> = OnceLock::new();

fn get_smallest_doc() -> &'static Documentation {
DOCUMENTATION.get_or_init(|| {
Documentation::builder(
DOC_SECTION_CONDITIONAL,
"Returns the smallest value in a list of expressions. Returns _null_ if all expressions are _null_.",
"least(expression1[, ..., expression_n])")
.with_sql_example(r#"```sql
> select least(4, 7, 5);
+---------------------------+
| least(4,7,5) |
+---------------------------+
| 4 |
+---------------------------+
```"#,
)
.with_argument(
"expression1, expression_n",
"Expressions to compare and return the smallest value. Can be a constant, column, or function, and any combination of arithmetic operators. Pass as many expression arguments as necessary."
)
.build()
})
}

#[cfg(test)]
mod test {
use crate::core::least::LeastFunc;
use arrow::datatypes::DataType;
use datafusion_expr::ScalarUDFImpl;

#[test]
fn test_least_return_types_without_common_supertype_in_arg_type() {
let least = LeastFunc::new();
let return_type = least
.coerce_types(&[DataType::Decimal128(10, 3), DataType::Decimal128(10, 4)])
.unwrap();
assert_eq!(
return_type,
vec![DataType::Decimal128(11, 4), DataType::Decimal128(11, 4)]
);
}
}
7 changes: 7 additions & 0 deletions datafusion/functions/src/core/mod.rs
Original file line number Diff line number Diff line change
Expand Up @@ -26,6 +26,7 @@ pub mod coalesce;
pub mod expr_ext;
pub mod getfield;
pub mod greatest;
pub mod least;
pub mod named_struct;
pub mod nullif;
pub mod nvl;
Expand All @@ -45,6 +46,7 @@ make_udf_function!(named_struct::NamedStructFunc, named_struct);
make_udf_function!(getfield::GetFieldFunc, get_field);
make_udf_function!(coalesce::CoalesceFunc, coalesce);
make_udf_function!(greatest::GreatestFunc, greatest);
make_udf_function!(least::LeastFunc, least);
make_udf_function!(version::VersionFunc, version);

pub mod expr_fn {
Expand Down Expand Up @@ -86,6 +88,10 @@ pub mod expr_fn {
greatest,
"Returns `greatest(args...)`, which evaluates to the greatest value in the list of expressions or NULL if all the expressions are NULL",
args,
),(
least,
"Returns `least(args...)`, which evaluates to the smallest value in the list of expressions or NULL if all the expressions are NULL",
args,
));

#[doc = "Returns the value of the field with the given name from the struct"]
Expand Down Expand Up @@ -113,6 +119,7 @@ pub fn functions() -> Vec<Arc<ScalarUDF>> {
get_field(),
coalesce(),
greatest(),
least(),
version(),
r#struct(),
]
Expand Down
Loading
Loading