Skip to content

alexifm/aws-data-wrangler

 
 

Repository files navigation

AWS Data Wrangler

Pandas on AWS

AWS Data Wrangler

Release Python Version Code style: black License

Checked with mypy Coverage Static Checking Documentation Status

Source Downloads Page Installation Command
PyPi PyPI Downloads Link pip install awswrangler
Conda Conda Downloads Link conda install -c conda-forge awswrangler

Quick Start

Install the Wrangler with: pip install awswrangler

import awswrangler as wr
import pandas as pd

df = pd.DataFrame({"id": [1, 2], "value": ["foo", "boo"]})

# Storing data on Data Lake
wr.s3.to_parquet(
    df=df,
    path="s3://bucket/dataset/",
    dataset=True,
    database="my_db",
    table="my_table"
)

# Retrieving the data directly from Amazon S3
df = wr.s3.read_parquet("s3://bucket/dataset/", dataset=True)

# Retrieving the data from Amazon Athena
df = wr.athena.read_sql_query("SELECT * FROM my_table", database="my_db")

# Get Redshift connection (SQLAlchemy) from Glue and retrieving data from Redshift Spectrum
engine = wr.catalog.get_engine("my-redshift-connection")
df = wr.db.read_sql_query("SELECT * FROM external_schema.my_table", con=engine)

# Get MySQL connection (SQLAlchemy) from Glue Catalog and LOAD the data into MySQL
engine = wr.catalog.get_engine("my-mysql-connection")
wr.db.to_sql(df, engine, schema="test", name="my_table")

# Get PostgreSQL connection (SQLAlchemy) from Glue Catalog and LOAD the data into PostgreSQL
engine = wr.catalog.get_engine("my-postgresql-connection")
wr.db.to_sql(df, engine, schema="test", name="my_table")

Packages

No packages published

Languages

  • Python 63.4%
  • Jupyter Notebook 36.0%
  • Other 0.6%