This is our implementation for the paper Contrastive Learning for Knowledge Tracing (TheWebConf 2022).
To run CL4KT, please prepare the configuration file (configs/example.yaml
) and the raw dataset (e.g., datatset/algebra05/data.txt
, datatset/assistments09/data.csv
, etc.).
For example, the algebra05
dataset comes from the KDD Cup 2010 EDM Challenge. Datasets need to be downloaded and put inside each corresponding data folder in dataset
.
Please use the following script to run data preprocessing:
python preprocess_data.py --data_name algebra05 --min_user_inter_num 5
Please use the following script to run the CL4KT model:
CUDA_VISIBLE_DEVICES=0 python main.py --model_name cl4kt --data_name algebra05 --mask_prob 0.5 --crop_prob 0.3 --permute_prob 0.5 --replace_prob 0.5 --reg_cl 0.1