我们使用 WenetSpeech [1] train_l 集的 1 万小时中文数据作为无监督预训练数据。数据主要来源于 YouTube 和 Podcast,覆盖了各种类型录制场景、背景噪声、说话方式等,其领域主要包括有声书、解说、纪录片、电视剧、访谈、新闻、朗读、演讲、综艺和其他等10大场景。我们基于 Fairseq 工具包 [2] 分别训练了 wav2vec 2.0 [3] 和 HuBERT [4] 模型,遵循 [3,4] 中模型配置,每个预训练模型模型包括 BASE 和 LARGE 两种大小。对于 BASE 模型,我们使用 8 张 A100 显卡,梯度累计为 8,模拟 64 张显卡进行训练。对于 LARGE 模型,我们使用 16 张 A100 显卡,梯度累计为 8,模拟 128 张显卡进行训练。
为了方便下载,在huggingface模型库里有fairseq模型,如chinese-wav2vec2-base 里的chinese-wav2vec2-base-fairseq-ckpt.pt
(We also provide fairseq checkpoint in huggingface model link, e.g chinese-wav2vec2-base-fairseq-ckpt.pt in chinese-wav2vec2-base )
模型 | 预训练数据 | fairseq模型下载(百度盘) | huggingface & fairseq模型下载 |
---|---|---|---|
chinese-wav2vec2-base | WenetSpeech train L | chinese-wav2vec2-base 提取码: d2hq | chinese-wav2vec2-base |
chinese-wav2vec2-large | WenetSpeech train L | chinese-wav2vec2-large 提取码: 7p8r | chinese-wav2vec2-large |
chinese-hubert-base | WenetSpeech train L | chinese-hubert-base 提取码: xjiy | chinese-hubert-base |
chinese-hubert-large | WenetSpeech train L | chinese-hubert-large 提取码: hhn7 | chinese-hubert-large |
为了验证预训练模型在下游 ASR 任务的效果,我们遵循 ESPnet [5,6,7] 工具包中的 Conformer [8] 模型实验配置,即将预训练模型作为特征提取器,对于输入语音提取预训练模型各隐层表征进行加权求和,得到的语音表征将替换传统 FBank 特征作为 Conformer ASR 模型的输入。
我们使用 Aishell 178 小时训练集作为有监督数据进行训练,分别对比了使用 FBank 特征、wav2vec 2.0 BASE/LARGE 模型特征和 HuBERT BASE/LARGE 模型特征的字错误率 (Character Error Rate, CER) 结果。同时,我们额外对比了使用 WenetSpeech train_l 集 1 万小时中文数据进行训练时,其在 Aishell 测试集上的效果。训练数据使用了变速(0.9、1.0、1.1 倍)和 SpecAugment 数据增广技术,解码方式为 beam search,使用了基于 Transformer 的语言模型进行 rescoring。具体实验结果见下表:
输入特征 | 训练数据 | Dev | Test |
---|---|---|---|
FBank [6] | 178h | 4.4 | 4.7 |
FBank [1] | 1wh | / | 3.9 |
Wav2vec 2.0 BASE | 178h | 4.2 | 4.7 |
Wav2vec 2.0 LARGE | 178h | 3.8 | 4.1 |
HuBERT Base | 178h | 4.1 | 4.3 |
HuBERT LARGE | 178h | 3.1 | 3.3 |
我们使用 WenetSpeech train_s 100h 数据集作为有监督数据进行训练,分别对比了使用 FBank 特征、wav2vec 2.0 模型特征和 HuBERT 模型特征的字错误率 (Character Error Rate, CER) 结果。同时,额外对比了使用 train_m 集 1000h 和 train_l 集 1wh 中文数据 FBank 特征训练的模型结果。训练数据没有使用变速或 SpecAugment 数据增广技术,解码方式为 beam search,没有使用语言模型 rescoring。具体实验结果见下表:
输入特征 | 训练数据 | Dev 集 | Test_Net 集 | Test_Meeting 集 |
---|---|---|---|---|
FBank | 100h | 17.4 | 22.6 | 32.7 |
FBank | 1000h | 11.6 | 14.6 | 22.4 |
FBank | 1wh | 9.7 | 8.9 | 15.9 |
wav2vec 2.0 BASE | 100h | 13.1 | 16.1 | 25.5 |
wav2vec 2.0 LARGE | 100h | 11.7 | 13.8 | 25.5 |
HuBERT BASE | 100h | 12.6 | 14.7 | 21.3 |
HuBERT LARGE | 100h | 10.0 | 10.2 | 14.5 |
# This model does not have a tokenizer as it was pretrained on audio alone.
# In order to use this model speech recognition, a tokenizer should be created and the model should be fine-tuned on labeled text data.
# python package
# transformers==4.16.2
# fairseq 使用
import torch
import torch.nn.functional as F
import soundfile as sf
from fairseq import checkpoint_utils
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model_path=""
wav_path=""
def postprocess(feats, normalize=False):
if feats.dim() == 2:
feats = feats.mean(-1)
assert feats.dim() == 1, feats.dim()
if normalize:
with torch.no_grad():
feats = F.layer_norm(feats, feats.shape)
return feats
print("loading model(s) from {}".format(model_path))
models, saved_cfg, task = checkpoint_utils.load_model_ensemble_and_task(
[model_path],
suffix="",
)
print("loaded model(s) from {}".format(model_path))
print(f"normalize: {saved_cfg.task.normalize}")
model = models[0]
model = model.to(device)
model = model.half()
model.eval()
wav, sr = sf.read(wav_path)
feat = torch.from_numpy(wav).float()
feat = postprocess(feat, normalize=saved_cfg.task.normalize)
feats = feat.view(1, -1)
padding_mask = (
torch.BoolTensor(feats.shape).fill_(False)
)
inputs = {
"source": feats.half().to(device),
"padding_mask": padding_mask.to(device),
}
with torch.no_grad():
logits = model.extract_features(**inputs)
# huggingface 使用
import torch
import torch.nn.functional as F
import soundfile as sf
from fairseq import checkpoint_utils
from transformers import (
Wav2Vec2FeatureExtractor,
Wav2Vec2ForPreTraining,
Wav2Vec2Model,
)
from transformers.models.wav2vec2.modeling_wav2vec2 import _compute_mask_indices
model_path=""
wav_path=""
mask_prob=0.0
mask_length=10
feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained(model_path)
model = Wav2Vec2Model.from_pretrained(model_path)
# for pretrain: Wav2Vec2ForPreTraining
# model = Wav2Vec2ForPreTraining.from_pretrained(model_path)
model = model.to(device)
model = model.half()
model.eval()
wav, sr = sf.read(wav_path)
input_values = feature_extractor(wav, return_tensors="pt").input_values
input_values = input_values.half()
input_values = input_values.to(device)
# for Wav2Vec2ForPreTraining
# batch_size, raw_sequence_length = input_values.shape
# sequence_length = model._get_feat_extract_output_lengths(raw_sequence_length)
# mask_time_indices = _compute_mask_indices((batch_size, sequence_length), mask_prob=0.0, mask_length=2)
# mask_time_indices = torch.tensor(mask_time_indices, device=input_values.device, dtype=torch.long)
with torch.no_grad():
outputs = model(input_values)
last_hidden_state = outputs.last_hidden_state
# for Wav2Vec2ForPreTraining
# outputs = model(input_values, mask_time_indices=mask_time_indices, output_hidden_states=True)
# last_hidden_state = outputs.hidden_states[-1]
欢迎大家使用我们提供的中文语音预训练模型开展研究工作,一起探索语音预训练模型在中文和相关众多场景下的应用。
以下项目使用了我们的模型
项目 | 项目地址 |
---|---|
GPT-SoVITS | GPT-SoVITS |
@misc{TencentGameMate,
title={chinese_speech_pretrain},
author = {Pengcheng Guo and Shixing Liu},
year = {2022},
url = {https://github.com/TencentGameMate/chinese_speech_pretrain},
}
[1] Binbin Zhang, Hang Lv, Pengcheng Guo, Qijie Shao, Chao Yang, Lei Xie, Xin Xu, Hui Bu, Xiaoyu Chen, Chenhen Zeng, Di Wu, and Zhendong Peng, "WenetSpeech: A 10000+ hours multi-domain Mandarin corpus for speech recognition," in Proc. ICASSP, 2021
[2] Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan, Sam Gross, Nathan Ng, David Grangier, and Michael Auli, "fairseq: A fast, extensible toolkit for sequence modeling," in Proc. NAACL, 2019.
[3] Alexei Baevski, Henry Zhou, Abdelrahman Mohamed, and Michael Auli, "wav2vec 2.0: A framework for self-supervised learning of speech representations," in Proc. NeurIPS, 2020.
[4] Wei-Ning Hsu, Benjamin Bolte, Yao-Hung Hubert Tsai, Kushal Lakhotia, Ruslan Salakhutdinov, and Abdelrahman Mohamed, "HuBERT: Self-supervised speech representation learning by masked prediction of hidden units," IEEE/ACM Transactions of Audio, Speech, and Language Processing, vol. 29, pp. 3451-3460, 2021
[5] Shinji Watanabe, Takaaki Hori, Shigeki Karita, Tomoki Hayashi, Jiro Nishitoba, Yuya Unno, Nelson Enrique Yalta Soplin, Jahn Heymann, Matthew Wiesner, Nanxin Chen, Adithya Renduchintala, and Tsubasa Ochiai, "ESPnet: End-to-end speech processing toolkit," in Proc. Interspeech, 2018, pp. 2207–2211
[6] Pengcheng Guo, Florian Boyer, Xuankai Chang, Tomoki Hayashi, Yosuke Higuchi, Hirofumi Inaguma, Naoyuki Kamo, Chenda Li, Daniel Garcia-Romero, Jiatong Shi, Jing Shi, Shinji Watanabe, Kun Wei, Wangyou Zhang and Yuekai Zhang, "Recent development on ESPnet tookit boosted by Conformer," in Proc. ICASSP, 2021
[7] Xuankai Chang, Takashi Maekaku, Pengcheng Guo, Jing Shi, Yen-Ju Lu, Aswin Shanmugam Subramanian, Tianzi Wang, Shu-wen Yang, Yu Tsao, Hung-yi Lee, and Shinji Watanabe, "An exploratino of self-supervised pretrained representations for end-to-end speech recognition," in Proc. ASRU, 2021
[8] Anmol Gulati, James Qin, Chung-Cheng Chiu, Niki Parmar, Yu Zhang, Jiahui Yu, Wei Han, Shibo Wang, Zhengdong Zhang, Yonghui Wu, and Ruoming Pan, "Conformer: Convolution-augmented Transformer for speech recognition," in Proc. Interspeech, 2020, pp.5036–5040