Skip to content

Graduation project: Lane Keeping Assistance of Autonomous Vehicles using Reinforcement Learning and Deep Learning on ROS

Notifications You must be signed in to change notification settings

MohamedAhmedAllam/DeepRL-Autonomous-Vehicle-ROS

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

11 Commits
 
 
 
 
 
 
 
 

Repository files navigation

Abstract

In this project we use several algorithms to tackle the problem of controlling an autonomous vehicle in the tasks of lane keeping and crash avoidance. The main simulation environment is ROS where we implemented a vehicle model equipped with a realistic laser sensor and a camera. Two separate simulation scenarios are designed for each task, one scenario is for training the algorithms and the other is to test the performance of the trained models. Three main learning algorithms are used. A discrete reinforcement learning algorithm called Q-learning, A continuous reinforcement learning algorithm called DDPG. The previous algorithms used laser sensor readings as input. The final algorithm, which is a supervised deep learning algorithm that uses an architecture of a Convolutional Neural Network, relied on images fed from the camera as input. A comparative study of the results is done based on specific evaluation criteria.

Read the report (graduation-design-project.pdf) for detailed description of the work.

About

Graduation project: Lane Keeping Assistance of Autonomous Vehicles using Reinforcement Learning and Deep Learning on ROS

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 4

  •  
  •  
  •  
  •