Since Google Summer of Code 2018, FFMpeg supports the sr
filter for applying super-resolution methods based on convolutional neural
networks. However, compiling FFMpeg with proper libraries and preparing models
for super-resolution requires expert knowledge. This repository provides a
Dockerfile that makes super-resolution in FFMpeg a breeze!
- Docker: For running containerized FFMpeg with super-resolution support.
- NVIDIA Container Toolkit: For GPU acceleration.
Simply clone the repo and build the container with the following commands:
git clone https://github.com/MIR-MU/ffmpeg-tensorflow.git
docker build --compress --no-cache --force-rm --squash -t miratmu/ffmpeg-tensorflow ffmpeg-tensorflow/
If you wish to use different versions of Libtensorflow, FFMpeg, CUDA, or Ubuntu
you can also build a customized container. Keep in mind that your version of
Libtensorflow (here 1.15.0
) should match your version of CUDA (here ≥ 10.0),
see the compatibility table. Your version of CUDA
should match your NVIDIA driver, see NVIDIA CUDA Toolkit Release Notes, Table
2:
docker build --compress --no-cache --force-rm --squash --build-arg VERSION_LIBTENSORFLOW=1.15.0 --build-arg VERSION_CUDA=10.0-cudnn7 --build-arg VERSION_UBUNTU=18.04 --build-arg VERSION_FFMPEG=4.3.1 -t miratmu/ffmpeg-tensorflow ffmpeg-tensorflow/
You should now see miratmu/ffmpeg-tensorflow
among your Docker images:
docker images
You can now remove the downloaded during the installation:
rm -rf ffmpeg-tensorflow/
If you skip this section, a pre-build Docker image will be downloaded from Docker Hub.
Download an example video and run the miratmu/ffmpeg-tensorflow
docker image to upscale it using one of the super-resolution models (here
ESPCN):
wget https://media.xiph.org/video/derf/y4m/flower_cif.y4m
alias ffmpeg-tensorflow='docker run --rm --gpus all -u $(id -u):$(id -g) -v "$PWD":/data -w /data -i miratmu/ffmpeg-tensorflow'
ffmpeg-tensorflow -i flower_cif.y4m -filter_complex '[0:v] format=pix_fmts=yuv420p, extractplanes=y+u+v [y][u][v]; [y] sr=dnn_backend=tensorflow:scale_factor=2:model=/models/espcn.pb [y_scaled]; [u] scale=iw*2:ih*2 [u_scaled]; [v] scale=iw*2:ih*2 [v_scaled]; [y_scaled][u_scaled][v_scaled] mergeplanes=0x001020:yuv420p [merged]' -map [merged] -sws_flags lanczos -c:v libx264 -crf 17 -c:a copy -y flower_cif_2x.mp4
The flower_cif_2x.mp4
file with the upscaled example video should be produced.
Compare upscaling using Lanczos filtering (left) with upscaling using the ESPCN
super-resolution model (right):
Besides ESPCN, the docker image includes pre-trained SRCNN, VESPCN, and VSRNET
models in the /models
directory. The architectures and
experimental results for the super-resolution results are
described in the HighVoltageRocknRoll/sr
GitHub repository.