Skip to content

Commit

Permalink
New NLSolversBase (#27)
Browse files Browse the repository at this point in the history
* New NLSolversBase
  • Loading branch information
pkofod authored Dec 18, 2017
1 parent cee18b6 commit 0372693
Show file tree
Hide file tree
Showing 11 changed files with 725 additions and 278 deletions.
155 changes: 145 additions & 10 deletions README.md
Original file line number Diff line number Diff line change
@@ -1,17 +1,152 @@
# NLSolversBase
NLSolversBase.jl
========

NLSolversBase is the core, common dependency of several [JuliaNLSolvers](https://github.com/JuliaNLSolvers) packages. Currently, it aims at establishing common ground for [Optim.jl](https://github.com/JuliaNLSolvers/Optim.jl) and [LineSearches.jl](https://github.com/JuliaNLSolvers/LineSearches.jl), but [NLsolve.jl](https://github.com/JuliaNLSolvers/NLsolve.jl) will eventually also depend on this package. The common ground is mainly the types used to hold objectives and information about the objectives, and an interface to interact with these types.
Base functionality for optimization and solving systems of equations in Julia.

Travis-CI
NLSolversBase.jl is the core, common dependency of several packages in the [JuliaNLSolvers](https://julianlsolvers.github.io) family.

[![Build Status](https://travis-ci.org/JuliaNLSolvers/NLSolversBase.jl.svg?branch=master)](https://travis-ci.org/JuliaNLSolvers/NLSolversBase.jl)

Package evaluator
| **PackageEvaluator** |**Build Status** |
|:-------------------------------:|:-------------------------------------------------:|
| [![][pkg-0.4-img]][pkg-0.4-url] | [![Build Status][build-img]][build-url] |
| [![][pkg-0.5-img]][pkg-0.5-url] | [![Codecov branch][cov-img]][cov-url] |
| [![][pkg-0.6-img]][pkg-0.6-url] | [![Coverage Status][coveralls-img]][coveralls-url]|

[![pkg-0.4-img](http://pkg.julialang.org/badges/NLSolversBase_0.5.svg)](http://pkg.julialang.org/?pkg=NLSolversBase&ver=0.5)
[![pkg-0.4-img](http://pkg.julialang.org/badges/NLSolversBase_0.6.svg)](http://pkg.julialang.org/?pkg=NLSolversBase&ver=0.6)

Code coverage
# Purpose

[![Coverage Status](https://coveralls.io/repos/JuliaNLSolvers/NLSolversBase.jl/badge.svg?branch=master&service=github)](https://coveralls.io/github/JuliaNLSolvers/NLSolversBase.jl?branch=master)
[![codecov.io](http://codecov.io/github/JuliaNLSolvers/NLSolversBase.jl/coverage.svg?branch=master)](http://codecov.io/github/pkofod/NLSolversBase.jl?branch=master)
The package aims at establishing common ground for [Optim.jl](https://github.com/JuliaNLSolvers/Optim.jl), [LineSearches.jl](https://github.com/JuliaNLSolvers/LineSearches.jl), and [NLsolve.jl](https://github.com/JuliaNLSolvers/NLsolve.jl). The common ground is mainly the types used to hold objective related callables, information about the objectives, and an interface to interact with these types.

## NDifferentiable
There are currently three main types: `NonDifferentiable`, `OnceDifferentiable`, and `TwiceDifferentiable`. There's also a more experimental `TwiceDifferentiableHV` for optimization algorithms that use Hessian-vector products. An `NDifferentiable` instance can be used to hold relevant functions for

- Optimization: ![Objective for optimization](https://user-images.githubusercontent.com/8431156/33996090-6224581c-e0e0-11e7-8737-5dd659745dcb.gif)
- Solving systems of equations: ![Objective for systems of equations](https://user-images.githubusercontent.com/8431156/33996088-60760c4a-e0e0-11e7-96ca-470f2731f1c7.gif)

The words in front of `Differentiable` in the type names (`Non`, `Once`, `Twice`) are not meant to indicate and specific classification of the function as such, but more the requirement of the algorithms used.

## Examples
#### Optimization
Say we want to minimize the Hosaki test function

![Himmelblau test function](https://user-images.githubusercontent.com/8431156/33995927-c5b9f950-e0df-11e7-8760-9ba792c2b331.gif)

The relevant functions are coded in Julia as
```julia
function f(x)
a = (1.0 - 8.0 * x[1] + 7.0 * x[1]^2 - (7.0 / 3.0) * x[1]^3 + (1.0 / 4.0) * x[1]^4)
return a * x[2]^2 * exp(-x[2])
end

function g!(G, x)
G[1] = (x[1]^3 - 7.0 * x[1]^2 + 14.0 * x[1] - 8)* x[2]^2 * exp(-x[2])
G[2] = 2.0 * (1.0 - 8.0 * x[1] + 7.0 * x[1]^2 - (7.0 / 3.0) * x[1]^3 + (1.0 / 4.0) * x[1]^4) * x[2] * exp(-x[2]) - (1.0 - 8.0 * x[1] + 7.0 * x[1]^2 - (7.0 / 3.0) * x[1]^3 + (1.0 / 4.0) * x[1]^4) * x[2]^2 * exp(-x[2])
end

function fg!(G, x)
g!(G, x)
f(x)
end

function h!(H, x)
H[1, 1] = (3.0 * x[1]^2 - 14.0 * x[1] + 14.0) * x[2]^2 * exp(-x[2])
H[1, 2] = 2.0 * (x[1]^3 - 7.0 * x[1]^2 + 14.0 * x[1] - 8.0) * x[2] * exp(-x[2]) - (x[1]^3 - 7.0 * x[1]^2 + 14.0 * x[1] - 8.0) * x[2]^2 * exp(-x[2])
H[2, 1] = 2.0 * (x[1]^3 - 7.0 * x[1]^2 + 14.0 * x[1] - 8.0) * x[2] * exp(-x[2]) - (x[1]^3 - 7.0 * x[1]^2 + 14.0 * x[1] - 8.0) * x[2]^2 * exp(-x[2])
H[2, 2] = 2.0 * (1.0 - 8.0 * x[1] + 7.0 * x[1]^2 - (7.0 / 3.0) * x[1]^3 + (1.0 / 4.0) * x[1]^4) * exp(-x[2]) - 4.0 * ( 1.0 - 8.0 * x[1] + 7.0 * x[1]^2 - (7.0 / 3.0) * x[1]^3 + (1.0 / 4.0) * x[1]^4) * x[2] * exp(-x[2]) + (1.0 - 8.0 * x[1] + 7.0 * x[1]^2 - (7.0 / 3.0) * x[1]^3 + (1.0 / 4.0) * x[1]^4) * x[2]^2 * exp(-x[2])
end
```
The `NDifferentiable` interface can be used as shown below to create various objectives:
```julia
x = zeros(4)
nd = NonDifferentiable(f, x)
od = OnceDifferentiable(f, g!, x)
odfg = OnceDifferentiable(f, g!, fg! x)
td1 = Twicedifferentiable(f, g!, h! x)
tdfg = Twicedifferentiable(f, g!, fg!, h! x)
```
#### Multivalued objective
If we consider the gradient of the Himmelblau function above, we can try to solve ![FOCs](https://user-images.githubusercontent.com/8431156/34005673-f7bc5b52-e0fb-11e7-8bd9-86efad17cb95.gif) without caring about the objective value. Then we can still create `NDifferentiable`s, but we need to specify the cache to hold the value of ![Multivalued objective](https://user-images.githubusercontent.com/8431156/34006586-2de39a3a-e0ff-11e7-8453-48aad94c6b5e.gif). Currently, the only relevant ones are `NonDifferentiable` and `OnceDifferentiable`. `TwiceDifferentiable` could be used for higher order (tensor) methods, though they are rarely worth the cost. The relevant functions coded in Julia are:

```julia
function f!(F, x)
F[1] = (x[1]^3 - 7.0 * x[1]^2 + 14.0 * x[1] - 8)* x[2]^2 * exp(-x[2])
F[2] = 2.0 * (1.0 - 8.0 * x[1] + 7.0 * x[1]^2 - (7.0 / 3.0) * x[1]^3 + (1.0 / 4.0) * x[1]^4) * x[2] * exp(-x[2]) - (1.0 - 8.0 * x[1] + 7.0 * x[1]^2 - (7.0 / 3.0) * x[1]^3 + (1.0 / 4.0) * x[1]^4) * x[2]^2 * exp(-x[2])
end

function j!(J, x)
J[1, 1] = (3.0 * x[1]^2 - 14.0 * x[1] + 14.0) * x[2]^2 * exp(-x[2])
J[1, 2] = 2.0 * (x[1]^3 - 7.0 * x[1]^2 + 14.0 * x[1] - 8.0) * x[2] * exp(-x[2]) - (x[1]^3 - 7.0 * x[1]^2 + 14.0 * x[1] - 8.0) * x[2]^2 * exp(-x[2])
J[2, 1] = 2.0 * (x[1]^3 - 7.0 * x[1]^2 + 14.0 * x[1] - 8.0) * x[2] * exp(-x[2]) - (x[1]^3 - 7.0 * x[1]^2 + 14.0 * x[1] - 8.0) * x[2]^2 * exp(-x[2])
J[2, 2] = 2.0 * (1.0 - 8.0 * x[1] + 7.0 * x[1]^2 - (7.0 / 3.0) * x[1]^3 + (1.0 / 4.0) * x[1]^4) * exp(-x[2]) - 4.0 * ( 1.0 - 8.0 * x[1] + 7.0 * x[1]^2 - (7.0 / 3.0) * x[1]^3 + (1.0 / 4.0) * x[1]^4) * x[2] * exp(-x[2]) + (1.0 - 8.0 * x[1] + 7.0 * x[1]^2 - (7.0 / 3.0) * x[1]^3 + (1.0 / 4.0) * x[1]^4) * x[2]^2 * exp(-x[2])
end

function fj!(F, G, x)
g!(G, x)
f!(F, x)
end
```
The `NDifferentiable` interface can be used as shown below to create various objectives:
```julia
x = zeros(4)
F = zeros(4)
nd = NonDifferentiable(f!, x, F)
od = OnceDifferentiable(f!, j!, x, F)
odfj = OnceDifferentiable(f!, j!, fj! x, F)
```

## Interface

To extract information about the objective, and to update given some input, we provide a function based interface. For all purposes it should be possible to use a function to extract/update information, and no field access should be necessary. Actually, we proactively discourage it, as it makes it much more difficult to make changes in the future.

### Single-valued objectives
To retrieve relevant information about single-valued functions, the following functions are available where applicable:
```julia
# obj is the objective function defined as shown above
value(df) # return the objective evaluated at df.x_f
gradient(df) # return the gradient evaluated at df.x_df
gradient(df, i) # return the gradient evaluated at df.x_df
hessian(df) # return the hessian evaluated at df.x_h
```
To update the various quantities, use:
```julia
# obj is the objective function defined as shown above
value!(df, x) # update the objective if !(df.x_f==x) and set df.x_f to x
value!!(df, x) # update the objective and set df.x_f to x
gradient!(df, x) # update the gradient if !(df.x_df==x) and set df.x_df to x
gradient!!(df, x) # update the gradient and set df.x_df to x
hessian!(df,x) # update the hessian if !(df.x_df==x) and set df.x_h to x
hessian!!(df,x) # update the hessian and set df.x_h to x
```

### Multivalued
To retrieve relevant information about multivalued functions, the following functions are available where applicable:
```julia
# obj is the objective function defined as shown above
value(df) # return the objective evaluated at df.x_f
jacobian(df) # return the jacobian evaluated at df.x_df
jacobian(df) # return the jacobian evaluated at df.x_df
```
To update the various quantities, use:
```julia
# obj is the objective function defined as shown above
value!(df, x) # update the objective if !(df.x_f==x) and set df.x_f to x
value!!(df, x) # update the objective and set df.x_f to x
jacobian!(df, x) # update the jacobian if !(df.x_df==x) and set df.x_df to x
jacobian!!(df, x) # update the jacobian and set df.x_df to x
```

[build-img]: https://travis-ci.org/JuliaNLSolvers/NLSolversBase.jl.svg?branch=master
[build-url]: https://travis-ci.org/JuliaNLSolvers/NLSolversBase.jl

[pkg-0.4-img]: http://pkg.julialang.org/badges/NLSolversBase_0.4.svg
[pkg-0.4-url]: http://pkg.julialang.org/?pkg=NLSolversBase&ver=0.4
[pkg-0.5-img]: http://pkg.julialang.org/badges/NLSolversBase_0.5.svg
[pkg-0.5-url]: http://pkg.julialang.org/?pkg=NLSolversBase&ver=0.5
[pkg-0.6-img]: http://pkg.julialang.org/badges/NLSolversBase_0.6.svg
[pkg-0.6-url]: http://pkg.julialang.org/?pkg=NLSolversBase&ver=0.6

[cov-img]: http://codecov.io/github/JuliaNLSolvers/NLSolversBase.jl/coverage.svg?branch=master
[cov-url]: http://codecov.io/github/pkofod/NLSolversBase.jl?branch=master

[coveralls-img]: https://coveralls.io/repos/JuliaNLSolvers/NLSolversBase.jl/badge.svg?branch=master&service=github
[coveralls-url]: https://coveralls.io/github/JuliaNLSolvers/NLSolversBase.jl?branch=master
20 changes: 18 additions & 2 deletions src/NLSolversBase.jl
Original file line number Diff line number Diff line change
Expand Up @@ -7,19 +7,35 @@ export AbstractObjective,
NonDifferentiable,
OnceDifferentiable,
TwiceDifferentiable,
TwiceDifferentiableHV,
iscomplex,
real_to_complex,
complex_to_real,
value,
value!,
value_gradient!,
value_jacobian!,
gradient,
gradient!,
jacobian,
jacobian!,
hessian,
hessian!
hessian!,
value!!,
value_gradient!!,
value_jacobian!!,
hessian!!,
hv_product,
hv_product!

x_of_nans(x) = convert(typeof(x), fill(eltype(x)(NaN), size(x)...))

include("complex_real.jl")
include("objective_types.jl")
include("objective_types/abstract.jl")
include("objective_types/nondifferentiable.jl")
include("objective_types/oncedifferentiable.jl")
include("objective_types/twicedifferentiable.jl")
include("objective_types/twicedifferentiablehv.jl")
include("interface.jl")

end # module
127 changes: 89 additions & 38 deletions src/interface.jl
Original file line number Diff line number Diff line change
@@ -1,62 +1,113 @@
function _unchecked_value!(obj, x)
function value!!(obj::AbstractObjective, x)
obj.f_calls .+= 1
copy!(obj.last_x_f, x)
obj.f_x = obj.f(real_to_complex(obj, x))
copy!(obj.x_f, x)
obj.F = obj.f(real_to_complex(obj, x))
end
function value(obj, x)
if x != obj.last_x_f
function value(obj::AbstractObjective, x)
if x != obj.x_f
obj.f_calls .+= 1
return obj.f(real_to_complex(obj,x))
end
obj.f_x
obj.F
end
function value!(obj, x)
if x != obj.last_x_f
_unchecked_value!(obj, x)
function value!(obj::AbstractObjective, x)
if x != obj.x_f
value!!(obj, x)
end
obj.f_x
obj.F
end


function _unchecked_gradient!(obj, x)
obj.g_calls .+= 1
copy!(obj.last_x_g, x)
obj.g!(real_to_complex(obj, obj.g), real_to_complex(obj, x))
function gradient(obj::AbstractObjective, x)
if x != obj.x_df
tmp = copy(obj.DF)
gradient!!(obj, x)
newdf = copy(obj.DF)
copy!(obj.DF, tmp)
return newdf
end
obj.DF
end
function gradient!(obj::AbstractObjective, x)
if x != obj.last_x_g
_unchecked_gradient!(obj, x)
if x != obj.x_df
gradient!!(obj, x)
end
end
function gradient!!(obj::AbstractObjective, x)
obj.df_calls .+= 1
copy!(obj.x_df, x)
obj.df(real_to_complex(obj, obj.DF), real_to_complex(obj, x))
end

function value_gradient!(obj::AbstractObjective, x)
if x != obj.last_x_f && x != obj.last_x_g
obj.f_calls .+= 1
obj.g_calls .+= 1
copy!(obj.last_x_f, x)
copy!(obj.last_x_g, x)
obj.f_x = obj.fg!(real_to_complex(obj, obj.g), real_to_complex(obj, x))
elseif x != obj.last_x_f
_unchecked_value!(obj, x)
elseif x != obj.last_x_g
_unchecked_gradient!(obj, x)
if x != obj.x_f && x != obj.x_df
value_gradient!!(obj, x)
elseif x != obj.x_f
value!!(obj, x)
elseif x != obj.x_df
gradient!!(obj, x)
end
obj.f_x
obj.F
end

function _unchecked_hessian!(obj::AbstractObjective, x)
obj.h_calls .+= 1
copy!(obj.last_x_h, x)
obj.h!(obj.H, x)
function value_gradient!!(obj::AbstractObjective, x)
obj.f_calls .+= 1
obj.df_calls .+= 1
copy!(obj.x_f, x)
copy!(obj.x_df, x)
obj.F = obj.fdf(real_to_complex(obj, obj.DF), real_to_complex(obj, x))
end

function hessian!(obj::AbstractObjective, x)
if x != obj.last_x_h
_unchecked_hessian!(obj, x)
if x != obj.x_h
hessian!!(obj, x)
end
end
function hessian!!(obj::AbstractObjective, x)
obj.h_calls .+= 1
copy!(obj.x_h, x)
obj.h(obj.H, x)
end

# Getters are without ! and accept only an objective and index or just an objective
value(obj::AbstractObjective) = obj.f_x
gradient(obj::AbstractObjective) = obj.g
gradient(obj::AbstractObjective, i::Integer) = obj.g[i]
value(obj::AbstractObjective) = obj.F
gradient(obj::AbstractObjective) = obj.DF
jacobian(obj::AbstractObjective) = gradient(obj)
gradient(obj::AbstractObjective, i::Integer) = obj.DF[i]
hessian(obj::AbstractObjective) = obj.H

value_jacobian!(obj, x) = value_jacobian!(obj, obj.F, obj.DF, x)
function value_jacobian!(obj, F, DF, x)
if x != obj.x_f && x != obj.x_df
value_jacobian!!(obj, F, DF, x)
elseif x != obj.x_f
value!!(obj, x)
elseif x != obj.x_df
jacobian!!(obj, x)
end
end
value_jacobian!!(obj, x) = value_jacobian!!(obj, obj.F, obj.DF, x)
function value_jacobian!!(obj, F, J, x)
obj.fdf(F, J, x)
copy!(obj.x_f, x)
copy!(obj.x_df, x)
obj.f_calls .+= 1
obj.df_calls .+= 1
end

function jacobian!(obj, x)
if x != obj.x_df
jacobian!!(obj, x)
end
end
function jacobian!!(obj, x)
obj.df(obj.DF, x)
copy!(obj.x_df, x)
obj.df_calls .+= 1
end

value!!(obj::NonDifferentiable{TF, TX, Tcplx}, x) where {TF<:AbstractArray, TX, Tcplx} = value!!(obj, obj.F, x)
value!!(obj::OnceDifferentiable{TF, TDF, TX, Tcplx}, x) where {TF<:AbstractArray, TDF, TX, Tcplx} = value!!(obj, obj.F, x)
function value!!(obj, F, x)
obj.f(F, x)
copy!(obj.x_f, x)
obj.f_calls .+= 1
end
Loading

0 comments on commit 0372693

Please sign in to comment.