Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

methods for left-division ops involving triangular matrices and sparse vectors #14447

Merged
merged 1 commit into from
Jan 27, 2016
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
3 changes: 2 additions & 1 deletion base/sparse.jl
Original file line number Diff line number Diff line change
Expand Up @@ -7,7 +7,8 @@ using Base.Sort: Forward
using Base.LinAlg: AbstractTriangular, PosDefException

import Base: +, -, *, \, &, |, $, .+, .-, .*, ./, .\, .^, .<, .!=, ==
import Base: A_mul_B!, Ac_mul_B, Ac_mul_B!, At_mul_B, At_mul_B!, A_ldiv_B!
import Base: A_mul_B!, Ac_mul_B, Ac_mul_B!, At_mul_B, At_mul_B!, At_ldiv_B, Ac_ldiv_B, A_ldiv_B!
import Base.LinAlg: At_ldiv_B!, Ac_ldiv_B!

import Base: @get!, acos, acosd, acot, acotd, acsch, asech, asin, asind, asinh,
atan, atand, atanh, broadcast!, chol, conj!, cos, cosc, cosd, cosh, cospi, cot,
Expand Down
124 changes: 124 additions & 0 deletions base/sparse/sparsevector.jl
Original file line number Diff line number Diff line change
Expand Up @@ -1492,3 +1492,127 @@ function _At_or_Ac_mul_B{TvA,TiA,TvX,TiX}(tfun::BinaryOp, A::SparseMatrixCSC{TvA
end
SparseVector(n, ynzind, ynzval)
end

# define matrix division operations involving triangular matrices and sparse vectors
# the valid left-division operations are A[t|c]_ldiv_B[!] and \
# the valid right-division operations are A(t|c)_rdiv_B[t|c][!]
# see issue #14005 for discussion of these methods
for isunittri in (true, false), islowertri in (true, false)
unitstr = isunittri ? "Unit" : ""
halfstr = islowertri ? "Lower" : "Upper"
tritype = :(Base.LinAlg.$(symbol(string(unitstr, halfstr, "Triangular"))))

# build out-of-place left-division operations
for (istrans, func, ipfunc) in (
(false, :(\), :(A_ldiv_B!)),
(true, :(At_ldiv_B), :(At_ldiv_B!)),
(true, :(Ac_ldiv_B), :(Ac_ldiv_B!)) )

# broad method where elements are Numbers
@eval function ($func){TA<:Number,Tb<:Number,S}(A::$tritype{TA,S}, b::SparseVector{Tb})
TAb = $(isunittri ?
:(typeof(zero(TA)*zero(Tb) + zero(TA)*zero(Tb))) :
:(typeof((zero(TA)*zero(Tb) + zero(TA)*zero(Tb))/one(TA))) )
($ipfunc)(convert(AbstractArray{TAb}, A), convert(Array{TAb}, b))
end

# faster method requiring good view support of the
# triangular matrix type. hence the StridedMatrix restriction.
@eval function ($func){TA<:Number,Tb<:Number,S<:StridedMatrix}(A::$tritype{TA,S}, b::SparseVector{Tb})
TAb = $(isunittri ?
:(typeof(zero(TA)*zero(Tb) + zero(TA)*zero(Tb))) :
:(typeof((zero(TA)*zero(Tb) + zero(TA)*zero(Tb))/one(TA))) )
r = convert(Array{TAb}, b)
# this operation involves only b[nzrange], so we extract
# and operate on solely that section for efficiency
nzrange = $( (islowertri && !istrans) || (!islowertri && istrans) ?
:(b.nzind[1]:b.n) :
:(1:b.nzind[end]) )
nzrangeviewr = sub(r, nzrange)
nzrangeviewA = $tritype(sub(A.data, nzrange, nzrange))
($ipfunc)(convert(AbstractArray{TAb}, nzrangeviewA), nzrangeviewr)
r
end

# fallback where elements are not Numbers
@eval ($func){TA,Tb,S}(A::$tritype{TA,S}, b::SparseVector{Tb}) = ($ipfunc)(A, copy(b))
end

# build in-place left-division operations
for (istrans, func) in (
(false, :(A_ldiv_B!)),
(true, :(At_ldiv_B!)),
(true, :(Ac_ldiv_B!)) )

# the generic in-place left-division methods handle these cases, but
# we can achieve greater efficiency where the triangular matrix provides
# good view support. hence the StridedMatrix restriction.
@eval function ($func){TA,Tb,S<:StridedMatrix}(A::$tritype{TA,S}, b::SparseVector{Tb})
# densify the relevant part of b in one shot rather
# than potentially repeatedly reallocating during the solve
$( (islowertri && !istrans) || (!islowertri && istrans) ?
:(_densifyfirstnztoend!(b)) :
:(_densifystarttolastnz!(b)) )
# this operation involves only the densified section, so
# for efficiency we extract and operate on solely that section
# furthermore we operate on that section as a dense vector
# such that dispatch has a chance to exploit, e.g., tuned BLAS
nzrange = $( (islowertri && !istrans) || (!islowertri && istrans) ?
:(b.nzind[1]:b.n) :
:(1:b.nzind[end]) )
nzrangeviewbnz = sub(b.nzval, nzrange - b.nzind[1] + 1)
nzrangeviewA = $tritype(sub(A.data, nzrange, nzrange))
($func)(nzrangeviewA, nzrangeviewbnz)
# could strip any miraculous zeros here perhaps
b
end
end
end

# helper functions for in-place matrix division operations defined above
"Densifies `x::SparseVector` from its first nonzero (`x[x.nzind[1]]`) through its end (`x[x.n]`)."
function _densifyfirstnztoend!(x::SparseVector)
# lengthen containers
oldnnz = nnz(x)
newnnz = x.n - x.nzind[1] + 1
resize!(x.nzval, newnnz)
resize!(x.nzind, newnnz)
# redistribute nonzero values over lengthened container
# initialize now-allocated zero values simultaneously
nextpos = newnnz
@inbounds for oldpos in oldnnz:-1:1
nzi = x.nzind[oldpos]
nzv = x.nzval[oldpos]
newpos = nzi - x.nzind[1] + 1
newpos < nextpos && (x.nzval[newpos+1:nextpos] = 0)
newpos == oldpos && break
x.nzval[newpos] = nzv
nextpos = newpos - 1
end
# finally update lengthened nzinds
x.nzind[2:end] = (x.nzind[1]+1):x.n
x
end
"Densifies `x::SparseVector` from its beginning (`x[1]`) through its last nonzero (`x[x.nzind[end]]`)."
function _densifystarttolastnz!(x::SparseVector)
# lengthen containers
oldnnz = nnz(x)
newnnz = x.nzind[end]
resize!(x.nzval, newnnz)
resize!(x.nzind, newnnz)
# redistribute nonzero values over lengthened container
# initialize now-allocated zero values simultaneously
nextpos = newnnz
@inbounds for oldpos in oldnnz:-1:1
nzi = x.nzind[oldpos]
nzv = x.nzval[oldpos]
nzi < nextpos && (x.nzval[nzi+1:nextpos] = 0)
nzi == oldpos && (nextpos = 0; break)
x.nzval[nzi] = nzv
nextpos = nzi - 1
end
nextpos > 0 && (x.nzval[1:nextpos] = 0)
# finally update lengthened nzinds
x.nzind[1:newnnz] = 1:newnnz
x
end
60 changes: 60 additions & 0 deletions test/sparsedir/sparsevector.jl
Original file line number Diff line number Diff line change
Expand Up @@ -724,6 +724,66 @@ let A = complex(sprandn(7, 8, 0.5), sprandn(7, 8, 0.5)),
@test_approx_eq full(y) Af'x2f
end

# left-division operations involving triangular matrices and sparse vectors (#14005)
let m = 10
sparsefloatvecs = SparseVector[sprand(m, 0.4) for k in 1:3]
sparseintvecs = SparseVector[SparseVector(m, sprvec.nzind, round(Int, sprvec.nzval*10)) for sprvec in sparsefloatvecs]
sparsecomplexvecs = SparseVector[SparseVector(m, sprvec.nzind, complex(sprvec.nzval, sprvec.nzval)) for sprvec in sparsefloatvecs]

sprmat = sprand(m, m, 0.2)
sparsefloatmat = speye(m) + sprmat/(2m)
sparsecomplexmat = speye(m) + SparseMatrixCSC(m, m, sprmat.colptr, sprmat.rowval, complex(sprmat.nzval, sprmat.nzval)/(4m))
sparseintmat = speye(Int, m)*10m + SparseMatrixCSC(m, m, sprmat.colptr, sprmat.rowval, round(Int, sprmat.nzval*10))

denseintmat = eye(Int, m)*10m + rand(1:m, m, m)
densefloatmat = eye(m) + randn(m, m)/(2m)
densecomplexmat = eye(m) + complex(randn(m, m), randn(m, m))/(4m)

inttypes = (Int32, Int64, BigInt)
floattypes = (Float32, Float64, BigFloat)
complextypes = (Complex{Float32}, Complex{Float64})
eltypes = (inttypes..., floattypes..., complextypes...)

for eltypemat in eltypes
(densemat, sparsemat) = eltypemat in inttypes ? (denseintmat, sparseintmat) :
eltypemat in floattypes ? (densefloatmat, sparsefloatmat) :
eltypemat in complextypes && (densecomplexmat, sparsecomplexmat)
densemat = convert(Matrix{eltypemat}, densemat)
sparsemat = convert(SparseMatrixCSC{eltypemat}, sparsemat)
trimats = (LowerTriangular(densemat), UpperTriangular(densemat),
LowerTriangular(sparsemat), UpperTriangular(sparsemat) )
unittrimats = (Base.LinAlg.UnitLowerTriangular(densemat), Base.LinAlg.UnitUpperTriangular(densemat),
Base.LinAlg.UnitLowerTriangular(sparsemat), Base.LinAlg.UnitUpperTriangular(sparsemat) )

for eltypevec in eltypes
spvecs = eltypevec in inttypes ? sparseintvecs :
eltypevec in floattypes ? sparsefloatvecs :
eltypevec in complextypes && sparsecomplexvecs
spvecs = SparseVector[SparseVector(m, spvec.nzind, convert(Vector{eltypevec}, spvec.nzval)) for spvec in spvecs]

for spvec in spvecs
fspvec = convert(Array, spvec)
# test out-of-place left-division methods
for mat in (trimats..., unittrimats...), func in (\, At_ldiv_B, Ac_ldiv_B)
@test isapprox((func)(mat, spvec), (func)(mat, fspvec))
end
# test in-place left-division methods not involving quotients
if eltypevec == typeof(zero(eltypemat)*zero(eltypevec) + zero(eltypemat)*zero(eltypevec))
for mat in unittrimats, func in (A_ldiv_B!, Base.LinAlg.At_ldiv_B!, Base.LinAlg.Ac_ldiv_B!)
@test isapprox((func)(mat, copy(spvec)), (func)(mat, copy(fspvec)))
end
end
# test in-place left-division methods involving quotients
if eltypevec == typeof((zero(eltypemat)*zero(eltypevec) + zero(eltypemat)*zero(eltypevec))/one(eltypemat))
for mat in trimats, func in (A_ldiv_B!, Base.LinAlg.At_ldiv_B!, Base.LinAlg.Ac_ldiv_B!)
@test isapprox((func)(mat, copy(spvec)), (func)(mat, copy(fspvec)))
end
end
end
end
end
end

# It's tempting to share data between a SparseVector and a SparseArrays,
# but if that's done, then modifications to one or the other will cause
# an inconsistent state:
Expand Down