Skip to content

Commit

Permalink
finite sums of ring elements
Browse files Browse the repository at this point in the history
Signed-off-by: Ali Caglayan <[email protected]>
  • Loading branch information
Alizter committed May 14, 2024
1 parent 5a54a54 commit 9cbbffd
Show file tree
Hide file tree
Showing 2 changed files with 242 additions and 3 deletions.
10 changes: 10 additions & 0 deletions theories/Algebra/Groups/Group.v
Original file line number Diff line number Diff line change
Expand Up @@ -486,6 +486,16 @@ Proof.
exact (ap (fun m => f g + m) IHn).
Defined.

(** All powers of the unit are the unit. *)
Definition grp_pow_unit {G : Group} (n : nat)
: grp_pow (G:=G) mon_unit n = mon_unit.
Proof.
induction n.
1: reflexivity.
lhs rapply left_identity.
exact IHn.
Defined.

(** ** The category of Groups *)

(** ** Groups together with homomorphisms form a 1-category whose equivalences are the group isomorphisms. *)
Expand Down
235 changes: 232 additions & 3 deletions theories/Algebra/Rings/Ring.v
Original file line number Diff line number Diff line change
@@ -1,8 +1,8 @@
Require Import WildCat.
Require Import Spaces.Nat.Core.
Require Import Spaces.Nat.Core Spaces.Nat.Arithmetic.
(* Some of the material in abstract_algebra and canonical names could be selectively exported to the user, as is done in Groups/Group.v. *)
Require Import Classes.interfaces.abstract_algebra.
Require Import Algebra.AbGroups.
Require Export Algebra.AbGroups.
Require Export Classes.theory.rings.
Require Import Modalities.ReflectiveSubuniverse.

Expand Down Expand Up @@ -454,7 +454,7 @@ Proof.
- intros R S T f g; cbn; reflexivity.
Defined.

(** ** More Ring laws *)
(** ** Powers *)

(** Powers of ring elements *)
Definition rng_power {R : Ring} (x : R) (n : nat) : R := nat_iter n (x *.) ring_one.
Expand All @@ -468,3 +468,232 @@ Proof.
refine ((rng_mult_assoc _ _ _)^ @ _).
exact (ap (x *.) IHn).
Defined.

(** ** Finite Sums *)

(** Indexed finite sum of ring elements. *)
Definition rng_sum {R : Ring} (n : nat) (f : forall k, (k < n)%nat -> R) : R.
Proof.
induction n as [|n IHn].
- exact ring_zero.
- refine (f n _ + IHn _).
intros k Hk.
refine (f k _).
apply leq_S.
exact Hk.
Defined.

(** If the function is constant in the range of a finite sum then the sum is equal to the constant times [n]. This is a group power in the underlying abelian group. *)
Definition rng_sum_const {R : Ring} (n : nat) (r : R)
(f : forall k, (k < n)%nat -> R) (p : forall k Hk, f k Hk = r)
: rng_sum n f = grp_pow r n.
Proof.
induction n as [|n IHn] in f, p |- *.
1: reflexivity.
simpl; f_ap.
apply IHn.
intros k Hk.
apply p.
Defined.

(** If the function is zero in the range of a finite sum then the sum is zero. *)
Definition rng_sum_zero {R : Ring} (n : nat)
(f : forall k, (k < n)%nat -> R) (p : forall k Hk, f k Hk = 0)
: rng_sum n f = 0.
Proof.
lhs nrapply (rng_sum_const _ 0 f p).
apply grp_pow_unit.
Defined.

(** Finite sums distribute over addition. *)
Definition rng_sum_plus {R : Ring} (n : nat) (f g : forall k, (k < n)%nat -> R)
: rng_sum n (fun k Hk => f k Hk + g k Hk)
= rng_sum n (fun k Hk => f k Hk) + rng_sum n (fun k Hk => g k Hk).
Proof.
induction n as [|n IHn].
1: by rewrite rng_plus_zero_l.
simpl.
rhs_V nrapply rng_plus_assoc.
rhs nrapply (ap (_ +)).
2: lhs nrapply rng_plus_assoc.
2: nrapply (ap (+ _)).
2: apply rng_plus_comm.
lhs_V nrapply rng_plus_assoc; f_ap.
rhs_V nrapply rng_plus_assoc; f_ap.
Defined.

(** Double finite sums commute. *)
Definition rng_sum_sum {R : Ring} (m n : nat)
(f : forall i j, (i < m)%nat -> (j < n)%nat -> R)
: rng_sum m (fun i Hi => rng_sum n (fun j Hj => f i j Hi Hj))
= rng_sum n (fun j Hj => rng_sum m (fun i Hi => f i j Hi Hj)).
Proof.
induction n as [|n IHn] in m, f |- *.
1: by nrapply rng_sum_zero.
lhs nrapply rng_sum_plus; cbn; f_ap.
Defined.

(** Finite sums are equal if the functions are equal in the range. *)
Definition path_rng_sum {R : Ring} {n : nat} {f g : forall k, (k < n)%nat -> R}
(p : forall k Hk, f k Hk = g k Hk)
: rng_sum n f = rng_sum n g.
Proof.
induction n as [|n IHn].
1: reflexivity.
cbn; f_ap.
by apply IHn.
Defined.

(** Ring multiplication distributes over finite sums on the left. *)
Definition rng_sum_dist_l {R : Ring} (n : nat) (f : forall k, (k < n)%nat -> R) (r : R)
: r * rng_sum n f = rng_sum n (fun k Hk => r * f k Hk).
Proof.
induction n as [|n IHn].
1: apply rng_mult_zero_r.
lhs nrapply rng_dist_l; simpl; f_ap.
Defined.

(** Ring multiplication distributes over finite sums on the right. *)
Definition rng_sum_dist_r {R : Ring} (n : nat) (f : forall k, (k < n)%nat -> R) (r : R)
: rng_sum n f * r = rng_sum n (fun k Hk => f k Hk * r).
Proof.
induction n as [|n IHn].
1: apply rng_mult_zero_l.
lhs nrapply rng_dist_r; simpl; f_ap.
Defined.

(** ** Kronecker Delta *)

(** The Kronecker delta function is a function of two natural numbers that is 1 when the two numbers are equal and 0 otherwise. It is useful for working with finite sums of ring elements. *)
Definition kronecker_delta {R : Ring} (i j : nat) : R
:= if dec (i = j) then 1 else 0.

(** Kronecker delta with the same index is 1. This holds definitionally for a given natural number, but not definitionally for an arbitrary one. *)
Definition kronecker_delta_refl {R : Ring} (i : nat)
: kronecker_delta (R:=R) i i = 1.
Proof.
unfold kronecker_delta.
generalize (dec (i = i)).
by rapply decidable_paths_refl.
Defined.

(** Kronecker delta with different indices is 0. *)
Definition kronecker_delta_neq {R : Ring} {i j : nat} (p : i <> j)
: kronecker_delta (R:=R) i j = 0.
Proof.
unfold kronecker_delta.
by decidable_false (dec (i = j)) p.
Defined.

(** Kronecker delta is symmetric in its arguments. *)
Definition kronecker_delta_symm {R : Ring} (i j : nat)
: kronecker_delta (R:=R) i j = kronecker_delta j i.
Proof.
unfold kronecker_delta.
destruct (dec (i = j)) as [p|q].
- by decidable_true (dec (j = i)) p^.
- by decidable_false (dec (j = i)) (symmetric_neq q).
Defined.

(** Kronecker delta where the first index is strictly less than the second is 0. *)
Definition kronecker_delta_lt {R : Ring} {i j : nat} (p : (i < j)%nat)
: kronecker_delta (R:=R) i j = 0.
Proof.
apply kronecker_delta_neq.
intros q; destruct q.
by apply not_lt_n_n in p.
Defined.

(** Kronecker delta where the first index is strictly greater than the second is 0. *)
Definition kronecker_delta_gt {R : Ring} {i j : nat} (p : (j < i)%nat)
: kronecker_delta (R:=R) i j = 0.
Proof.
apply kronecker_delta_neq.
intros q; destruct q.
by apply not_lt_n_n in p.
Defined.

(** An injective endofunction on nat preserves the Kronecker delta. *)
Definition kronecker_delta_map_inj {R : Ring} (i j : nat) (f : nat -> nat)
`{!IsInjective f}
: kronecker_delta (R:=R) (f i) (f j) = kronecker_delta i j.
Proof.
unfold kronecker_delta.
destruct (dec (i = j)) as [p|p].
- by decidable_true (dec (f i = f j)) (ap f p).
- destruct (dec (f i = f j)) as [q|q].
+ apply (injective f) in q.
contradiction.
+ reflexivity.
Defined.

(** Kronecker delta commutes with any ring element. *)
Definition kronecker_delta_comm {R : Ring} (i j : nat) (r : R)
: r * kronecker_delta i j = kronecker_delta i j * r.
Proof.
unfold kronecker_delta.
destruct (dec (i = j)).
- exact (rng_mult_one_r _ @ (rng_mult_one_l _)^).
- exact (rng_mult_zero_r _ @ (rng_mult_zero_l _)^).
Defined.

(** Kronecker delta can be used to extract a single term from a finite sum. *)
Definition rng_sum_kronecker_delta_l {R : Ring} (n i : nat) (Hi : (i < n)%nat)
(f : forall k, (k < n)%nat -> R)
: rng_sum n (fun j Hj => kronecker_delta i j * f j Hj) = f i Hi.
Proof.
induction n as [|n IHn] in i, Hi, f |- *.
1: destruct (not_leq_Sn_0 _ Hi).
destruct (dec (i = n)) as [p|p].
- destruct p; simpl.
rewrite kronecker_delta_refl.
rewrite rng_mult_one_l.
rewrite <- rng_plus_zero_r.
f_ap; [f_ap; rapply path_ishprop|].
nrapply rng_sum_zero.
intros k Hk.
rewrite (kronecker_delta_gt Hk).
apply rng_mult_zero_l.
- simpl; lhs nrapply ap.
+ nrapply IHn.
apply diseq_implies_lt in p.
destruct p; [assumption|].
contradiction (lt_implies_not_geq Hi).
+ rewrite (kronecker_delta_neq p).
rewrite rng_mult_zero_l.
rewrite rng_plus_zero_l.
f_ap; apply path_ishprop.
Defined.

(** Variant of [rng_sum_kronecker_delta_l] where the indexing is swapped. *)
Definition rng_sum_kronecker_delta_l' {R : Ring} (n i : nat) (Hi : (i < n)%nat)
(f : forall k, (k < n)%nat -> R)
: rng_sum n (fun j Hj => kronecker_delta j i * f j Hj) = f i Hi.
Proof.
lhs nrapply path_rng_sum.
2: nrapply rng_sum_kronecker_delta_l.
intros k Hk.
cbn; f_ap; apply kronecker_delta_symm.
Defined.

(** Variant of [rng_sum_kronecker_delta_l] where the Kronecker delta appears on the right. *)
Definition rng_sum_kronecker_delta_r {R : Ring} (n i : nat) (Hi : (i < n)%nat)
(f : forall k, (k < n)%nat -> R)
: rng_sum n (fun j Hj => f j Hj * kronecker_delta i j) = f i Hi.
Proof.
lhs nrapply path_rng_sum.
2: nrapply rng_sum_kronecker_delta_l.
intros k Hk.
apply kronecker_delta_comm.
Defined.

(** Variant of [rng_sum_kronecker_delta_r] where the indexing is swapped. *)
Definition rng_sum_kronecker_delta_r' {R : Ring} (n i : nat) (Hi : (i < n)%nat)
(f : forall k, (k < n)%nat -> R)
: rng_sum n (fun j Hj => f j Hj * kronecker_delta j i) = f i Hi.
Proof.
lhs nrapply path_rng_sum.
2: nrapply rng_sum_kronecker_delta_l'.
intros k Hk.
apply kronecker_delta_comm.
Defined.

0 comments on commit 9cbbffd

Please sign in to comment.