Skip to content

Commit

Permalink
Convert more files to Inductive IsTrunc
Browse files Browse the repository at this point in the history
  • Loading branch information
jdchristensen committed Jan 11, 2024
1 parent d6b41fe commit 4cbf7ef
Show file tree
Hide file tree
Showing 14 changed files with 39 additions and 31 deletions.
2 changes: 1 addition & 1 deletion theories/DProp.v
Original file line number Diff line number Diff line change
Expand Up @@ -127,7 +127,7 @@ Definition path_dhprop `{Univalence} {P Q : DHProp}

Global Instance ishset_dprop `{Univalence} : IsHSet DProp.
Proof.
intros P Q.
apply istrunc_S; intros P Q.
refine (istrunc_equiv_istrunc _ (n := -1) (equiv_path_dprop P Q)).
Defined.

Expand Down
8 changes: 5 additions & 3 deletions theories/HIT/epi.v
Original file line number Diff line number Diff line change
@@ -1,6 +1,7 @@
Require Import Basics.
Require Import Types.
Require Import TruncType.
Require Import ReflectiveSubuniverse.
Require Import Colimits.Pushout Truncations.Core HIT.SetCone.

Local Open Scope path_scope.
Expand Down Expand Up @@ -28,7 +29,7 @@ Proof.
(** TODO(JasonGross): Can we do this entirely by chaining equivalences? *)
apply equiv_iff_hprop.
{ intro hepi.
refine {| center := (g; idpath) |}.
nrapply (Build_Contr _ (g; idpath)).
intro xy; specialize (hepi xy).
apply path_sigma_uncurried.
exists hepi.
Expand All @@ -55,7 +56,7 @@ Section cones.
Lemma isepi'_contr_cone `{Funext} {A B : HSet} (f : A -> B) : isepi' f -> Contr (setcone f).
Proof.
intros hepi.
exists (setcone_point _).
apply (Build_Contr _ (setcone_point _)).
pose (alpha1 := @pglue A B Unit f (const_tt _)).
pose (tot:= { h : B -> setcone f & tr o push o inl o f = h o f }).
transparent assert (l : tot).
Expand Down Expand Up @@ -160,7 +161,8 @@ Section isepi_issurj.
assert (X0 : forall x : setcone f, fam x = fam (setcone_point f)).
{ intros. apply contr_dom_equiv. apply i. }
specialize (X0 (tr (push (inl y)))). simpl in X0.
exact (transport Contr (ap trunctype_type X0)^ _).
unfold IsConnected.
refine (transport (fun A => Contr A) (ap trunctype_type X0)^ _); exact _.
Defined.
End isepi_issurj.

Expand Down
2 changes: 1 addition & 1 deletion theories/HIT/quotient.v
Original file line number Diff line number Diff line change
Expand Up @@ -176,7 +176,7 @@ Section Equiv.
intros ? ? dclass. apply quotient_ind with dclass.
- simple refine (quotient_ind R (fun x => IsHSet (P x)) _ _); cbn beta; try exact _.
intros; apply path_ishprop.
- intros. apply Hprop'.
- intros. apply path_ishprop.
Defined.

(** From Ch6 *)
Expand Down
4 changes: 2 additions & 2 deletions theories/Limits/Pullback.v
Original file line number Diff line number Diff line change
Expand Up @@ -324,7 +324,7 @@ Proof.
srapply equiv_adjointify.
- intros [p q].
refine (p; q; _).
apply (istrunc_sq (-2)).
apply (@center _ (istrunc_sq (-2))).
- intros [p [q _]].
exact (p, q).
- intros [p [q ?]].
Expand All @@ -333,7 +333,7 @@ Proof.
refine (transport_sigma' _ _ @ _).
srapply path_sigma'.
1: reflexivity.
apply (istrunc_sq (-2)).
apply path_ishprop.
- reflexivity.
Defined.

Expand Down
3 changes: 2 additions & 1 deletion theories/Modalities/Lex.v
Original file line number Diff line number Diff line change
Expand Up @@ -192,7 +192,8 @@ Section LexModality.
Proof.
generalize dependent A; simple_induction n n IHn; intros A ?.
- exact _. (** Already proven for all modalities. *)
- refine (O_ind (fun x => forall y, IsTrunc n (x = y)) _); intros x.
- apply istrunc_S.
refine (O_ind (fun x => forall y, IsTrunc n (x = y)) _); intros x.
refine (O_ind (fun y => IsTrunc n (to O A x = y)) _); intros y.
refine (istrunc_equiv_istrunc _ (equiv_path_O x y)).
Defined.
Expand Down
2 changes: 1 addition & 1 deletion theories/Modalities/Localization.v
Original file line number Diff line number Diff line change
Expand Up @@ -349,7 +349,7 @@ Proof.
intros i.
apply ishprop_ooextendable@{a a i i i
i i i i i
i i i i i}.
i i i i i i}.
- apply islocal_equiv_islocal.
- apply islocal_localize.
- cbn. intros Q Q_inO.
Expand Down
4 changes: 2 additions & 2 deletions theories/Modalities/Nullification.v
Original file line number Diff line number Diff line change
Expand Up @@ -56,11 +56,11 @@ Proof.
apply ooextendable_over_unit; intros c.
refine (ooextendable_postcompose@{a a i i i i i i i i}
(fun (_:Unit) => B (c tt)) _ _
(fun u => transport B (ap c (path_unit@{a} tt u))) _).
(fun u => transport B (ap@{Set _} c (path_unit tt u))) _).
refine (ooextendable_islocal _ i).
+ reflexivity.
+ apply inO_paths@{i i}.
Defined.
Defined.

(** And here is the "real" definition of the notation [IsNull]. *)
Notation IsNull f := (In (Nul f)).
Expand Down
11 changes: 5 additions & 6 deletions theories/Modalities/ReflectiveSubuniverse.v
Original file line number Diff line number Diff line change
Expand Up @@ -68,11 +68,11 @@ Definition Type_@{i j} (O : Subuniverse@{i}) : Type@{j}
Coercion TypeO_pr1 O (T : Type_ O) := @pr1 Type (In O) T.

(** The second component of [TypeO] is unique. *)
Definition path_TypeO@{i j} {fs : Funext} O (T T' : Type_ O) (p : T.1 = T'.1)
Definition path_TypeO@{i j} {fs : Funext} O (T T' : Type_@{i j} O) (p : T.1 = T'.1)
: T = T'
:= path_sigma_hprop@{j i j} T T' p.

Definition equiv_path_TypeO@{i j} {fs : Funext} O (T T' : Type_ O)
Definition equiv_path_TypeO@{i j} {fs : Funext} O (T T' : Type_@{i j} O)
: (paths@{j} T.1 T'.1) <~> (T = T')
:= equiv_path_sigma_hprop@{j i j} T T'.

Expand Down Expand Up @@ -702,7 +702,7 @@ Section Reflective_Subuniverse.
Global Instance contr_typeof_O_unit `{Univalence} (A : Type)
: Contr (typeof_to_O A).
Proof.
exists (O A ; (to O A ; (_ , _))).
apply (Build_Contr _ (O A ; (to O A ; (_ , _)))).
intros [OA [Ou [? ?]]].
pose (f := O_rec Ou : O A -> OA).
pose (g := (O_functor Ou)^-1 o to O OA : (OA -> O A)).
Expand Down Expand Up @@ -1049,8 +1049,7 @@ Section Reflective_Subuniverse.
generalize dependent A; simple_induction n n IH; intros A ?.
- (** We have to be slightly clever here: the actual definition of [Contr] involves a sigma, which [O] is not generally closed under, but fortunately we have [equiv_contr_inhabited_allpath]. *)
refine (inO_equiv_inO _ equiv_contr_inhabited_allpath^-1).
- change (In O (forall x y:A, IsTrunc n (x=y))).
exact _.
- refine (inO_equiv_inO _ (equiv_istrunc_unfold n.+1 A)^-1).
Defined.

(** ** Coproducts *)
Expand Down Expand Up @@ -1373,7 +1372,7 @@ Section ConnectedTypes.
: NullHomotopy (to O A) -> IsConnected O A.
Proof.
intros nh.
exists (nh .1).
apply (Build_Contr _ (nh .1)).
rapply O_indpaths.
intros x; symmetry; apply (nh .2).
Defined.
Expand Down
7 changes: 4 additions & 3 deletions theories/Modalities/Separated.v
Original file line number Diff line number Diff line change
Expand Up @@ -120,10 +120,11 @@ Proof.
Defined.

(* As a special case, if X embeds into an n-type for n >= -1 then X is an n-type. Note that this doesn't hold for n = -2. *)
Corollary istrunc_embedding_trunc `{Funext} {X Y : Type} {n : trunc_index} `{IsTrunc n.+1 Y}
(i : X -> Y) `{IsEmbedding i} : IsTrunc n.+1 X.
Corollary istrunc_embedding_trunc `{Funext} {X Y : Type} {n : trunc_index} `{istr : IsTrunc n.+1 Y}
(i : X -> Y) `{isem : IsEmbedding i} : IsTrunc n.+1 X.
Proof.
exact (@in_SepO_embedding (Tr n) _ _ i IsEmbedding0 H0).
apply istrunc_S.
exact (@in_SepO_embedding (Tr n) _ _ i isem istr).
Defined.

Global Instance in_SepO_hprop (O : ReflectiveSubuniverse)
Expand Down
2 changes: 1 addition & 1 deletion theories/Modalities/Topological.v
Original file line number Diff line number Diff line change
Expand Up @@ -129,7 +129,7 @@ Proof.
rapply (isconnected_acc_ngen (Nul D) (inr (a;(b,x)))). }
pose (p := conn_map_elim (Nul D) (unit_name b)
(fun u => f b = f u) (fun _ => 1)).
exists (f b ; p); intros [x q].
apply (Build_Contr _ (f b ; p)); intros [x q].
refine (path_sigma' _ (q b)^ _); apply path_forall.
refine (conn_map_elim (Nul D) (unit_name b) _ _); intros [].
rewrite transport_forall_constant, transport_paths_l, inv_V.
Expand Down
7 changes: 4 additions & 3 deletions theories/Truncations/Connectedness.v
Original file line number Diff line number Diff line change
Expand Up @@ -41,10 +41,11 @@ Lemma istrunc_extension_along_conn `{Univalence} {m n : trunc_index}
Proof.
revert P HP d. induction m as [ | m' IH]; intros P HP d; simpl in *.
(* m = –2 *)
- exists (extension_conn_map_elim n f P d).
- apply (Build_Contr _ (extension_conn_map_elim n f P d)).
intros y. apply (allpath_extension_conn_map n); assumption.
(* m = S m' *)
- intros e e'. refine (istrunc_isequiv_istrunc _ (path_extension e e')).
- apply istrunc_S.
intros e e'. refine (istrunc_isequiv_istrunc _ (path_extension e e')).
(* magically infers: paths in extensions = extensions into paths, which by induction is m'-truncated. *)
Defined.

Expand Down Expand Up @@ -175,7 +176,7 @@ Defined.
Global Instance is0connected_component {X : Type} (x : X)
: IsConnected 0 { z : X & merely (z = x) }.
Proof.
exists (tr (x; tr idpath)).
apply (Build_Contr _ (tr (x; tr idpath))).
rapply Trunc_ind; intros [Z p].
strip_truncations.
apply (ap tr).
Expand Down
10 changes: 6 additions & 4 deletions theories/Truncations/Core.v
Original file line number Diff line number Diff line change
Expand Up @@ -58,14 +58,15 @@ Definition Trunc_rec_tr n {A : Type}

Definition Tr (n : trunc_index) : Modality.
Proof.
srapply (Build_Modality (IsTrunc n)).
- intros A B ? f ?; apply (istrunc_isequiv_istrunc A f).
srapply (Build_Modality (fun A => IsTrunc n A)); cbn.
- intros A B ? f ?; rapply (istrunc_isequiv_istrunc A f).
- exact (Trunc n).
- intros; apply istrunc_truncation.
- intros A; apply tr.
- intros A B ? f oa; cbn in *.
exact (Trunc_ind B f oa).
- intros; reflexivity.
- exact (@istrunc_paths' n).
Defined.

(** We don't usually declare modalities as coercions, but this particular one is convenient so that lemmas about (for instance) connected maps can be applied to truncation modalities without the user/reader needing to be (particularly) aware of the general notion of modality. *)
Expand Down Expand Up @@ -244,7 +245,7 @@ Proof.
rapply (Trunc_functor _ (X:= (hfiber (g o f) c))).
- intros [a p].
exact (f a; p).
- apply isconn.
- apply center, isconn.
Defined.

(** Retractions are surjective. *)
Expand All @@ -269,7 +270,8 @@ Definition isembedding_precompose_surjection_hset `{Funext} {X Y Z : Type}
`{IsHSet X} (f : Y -> Z) `{IsSurjection f}
: IsEmbedding (fun phi : Z -> X => phi o f).
Proof.
intros phi g0 g1; cbn.
intros phi; apply istrunc_S.
intros g0 g1; cbn.
rapply contr_inhabited_hprop.
apply path_sigma_hprop, equiv_path_arrow.
rapply conn_map_elim; intro y.
Expand Down
2 changes: 1 addition & 1 deletion theories/Truncations/SeparatedTrunc.v
Original file line number Diff line number Diff line change
Expand Up @@ -16,7 +16,7 @@ Global Instance O_eq_Tr (n : trunc_index)
Proof.
split; intros A A_inO.
- intros x y; exact _.
- exact _.
- rapply istrunc_S.
Defined.

(** It follows that [Tr n <<< Tr n.+1]. However, it is easier to prove this directly than to go through separatedness. *)
Expand Down
6 changes: 4 additions & 2 deletions theories/Types/Unit.v
Original file line number Diff line number Diff line change
Expand Up @@ -4,6 +4,8 @@
Require Import Basics.Overture Basics.Equivalences.
Local Open Scope path_scope.

Local Set Universe Minimization ToSet.

Generalizable Variables A.

(** ** Eta conversion *)
Expand Down Expand Up @@ -113,5 +115,5 @@ Definition equiv_contr_unit `{Contr A} : A <~> Unit
Global Instance contr_equiv_unit (A : Type) (f : A <~> Unit) : Contr A | 10000
:= contr_equiv' Unit f^-1%equiv.

(** The constant map to [Unit]. We define this so we can get rid of an unneeded universe variable that Coq generates when this is not annotated. If we ever turn on [Universe Minimization ToSet], then we could get rid of this and remove some imports of this file. *)
Definition const_tt@{u} (A : Type@{u}) := @const@{Set u} A Unit tt.
(** The constant map to [Unit]. We define this so we can get rid of an unneeded universe variable that Coq generates when [const tt] is used in a context that doesn't have [Universe Minimization ToSet] as this file does. If we ever set that globally, then we could get rid of this and remove some imports of this file. *)
Definition const_tt (A : Type) := @const A Unit tt.

0 comments on commit 4cbf7ef

Please sign in to comment.