-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
133da00
commit b284b25
Showing
5 changed files
with
301 additions
and
56 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,6 +1,6 @@ | ||
Package: PaleoSpec | ||
Title: Spectral tools for the ECUS group | ||
Version: 0.31 | ||
Version: 0.32 | ||
Authors@R: c( | ||
person("Thomas", "Laepple", email = "[email protected]", role = c("aut", "cre")), | ||
person("Thomas", "Muench", email = "[email protected]", role = c("aut")), | ||
|
@@ -14,7 +14,7 @@ Depends: | |
License: MIT + file LICENSE | ||
Encoding: UTF-8 | ||
LazyData: true | ||
RoxygenNote: 7.2.3 | ||
RoxygenNote: 7.3.1 | ||
Imports: | ||
multitaper, | ||
zoo, | ||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,7 +1,9 @@ | ||
#' Estimate Power Spectra via the Autocovariance Function | ||
#' Estimate Power Spectra via the Autocovariance Function With Optional Slepian | ||
#' Tapers | ||
#' | ||
#' @param x a vector or matrix of binned values, possibly with gaps | ||
#' @param bin.width the width of the bins, effectively delta_t | ||
#' @param deltat,bin.width the time-step of the timeseries, equivalently the | ||
#' width of the bins in a binned timeseries, set only one | ||
#' @param pos.f.only return only positive frequencies, defaults to TRUE If TRUE, | ||
#' freq == 0, and frequencies higher than 1/(2*bin.width) which correspond to | ||
#' the negative frequencies are removed | ||
|
@@ -20,94 +22,230 @@ | |
#' indicates that the estimates are unbiased such that smoothing across | ||
#' frequencies to remove negative estimates results in an unbiased power | ||
#' spectrum. | ||
#' @inheritParams SpecMTM | ||
#' @importFrom multitaper spec.mtm | ||
#' @author Torben Kunz and Andrew Dolman <[email protected]> | ||
#' @return a spec object (list) | ||
#' @family functions to estimate power spectra | ||
#' @export | ||
#' | ||
#' @examples | ||
#' set.seed(20230312) | ||
#' x <- cumsum(rgamma(200, shape = 1.5, rate = 1.5/10)) | ||
#' y <- SimProxySeries(a = 0.1, b = 1, t.smpl = x, nt = 2000, | ||
#' smth.lab = list(type = "rect", tau = 1)) | ||
#' y_binned <- BinTimeseries(x, y, bin.width = 15) | ||
#' sp1 <- SpecACF(y_binned$mean.value, bin.width = 15) | ||
#' sp2 <- LogSmooth(sp1) | ||
#' LPlot(sp1) | ||
#' LLines(sp2, col = "red") | ||
SpecACF <- function(x, bin.width, | ||
demean = TRUE, detrend = TRUE, | ||
TrimNA = TRUE, | ||
pos.f.only = TRUE, | ||
return.working = FALSE){ | ||
#' | ||
#' # Comparison with SpecMTM | ||
#' | ||
#' tsM <- replicate(2, SimPLS(1e03, 1, 0.1)) | ||
#' spMk3 <- SpecACF(tsM, bin.width = 1, k = 3, nw = 2) | ||
#' spMk1 <- SpecACF(tsM, bin.width = 1, k = 1, nw = 0) | ||
#' | ||
#' spMTMa <- SpecMTM(tsM[,1], deltat = 1) | ||
#' spMTMb <- SpecMTM(tsM[,2], deltat = 1) | ||
#' spMTM <- spMTMa | ||
#' spMTM$spec <- (spMTMa$spec + spMTMb$spec)/2 | ||
#' | ||
#' gg_spec(list( | ||
#' `ACF k=1` = spMk1, | ||
#' `ACF k=3` = spMk3, | ||
#' `MTM k=3` = spMTM | ||
#' ), alpha.line = 0.75) + | ||
#' ggplot2::facet_wrap(~spec_id) | ||
#' | ||
#' ## No gaps | ||
#' | ||
#' ts1 <- SimPLS(1000, 1, 0.1) | ||
#' | ||
#' sp_ACF1 <- SpecACF(ts1, 1, k = 1) | ||
#' sp_MTM7 <- SpecMTM(ts1, nw = 4, k = 7, deltat = 1) | ||
#' sp_ACF7 <- SpecACF(ts1, 1, k = 7, nw = 4) | ||
#' | ||
#' gg_spec(list( | ||
#' `ACF k=1` = sp_ACF1, `ACF k=7` = sp_ACF7, `MTM k=7` = sp_MTM7 | ||
#' )) | ||
#' | ||
#' # With Gaps | ||
#' | ||
#' gaps <- (arima.sim(list(ar = 0.5), n = length(ts1))) > 1 | ||
#' table(gaps) | ||
#' ts1_g <- ts1 | ||
#' ts1_g[gaps] <- NA | ||
#' | ||
#' sp_ACF1_g <- SpecACF(ts1_g, 1) | ||
#' sp_ACFMTM1_g <- SpecACF(ts1_g, bin.width = 1, nw = 4, k = 7) | ||
#' | ||
#' gg_spec(list( | ||
#' ACF_g = sp_ACF1_g, | ||
#' ACF_g_smoothed = FilterSpecLog(sp_ACF1_g), | ||
#' ACF_g_tapered = sp_ACFMTM1_g | ||
#' ), conf = FALSE) + | ||
#' ggplot2::geom_abline(intercept = log10(0.1), slope = -1, lty = 2) | ||
#' | ||
#' | ||
#' | ||
#' ## AR4 | ||
#' arc_spring <- c(2.7607, -3.8106, 2.6535, -0.9238) | ||
#' | ||
#' tsAR4 <- arima.sim(list(ar = arc_spring), n = 1e03) + rnorm(1e03, 0, 10) | ||
#' plot(tsAR4) | ||
#' spAR4_ACF <- SpecACF(tsAR4, 1) | ||
#' spAR4_MTACF <- SpecACF(as.numeric(tsAR4), 1, k = 15, nw = 8) | ||
#' | ||
#' gg_spec(list(#' | ||
#' `ACF k=1` = spAR4_ACF, | ||
#' `ACF k=15` = spAR4_MTACF) | ||
#' ) | ||
#' | ||
#' ## Add gaps to timeseries | ||
#' | ||
#' gaps <- (arima.sim(list(ar = 0.5), n = length(tsAR4))) > 2 | ||
#' table(gaps) | ||
#' tsAR4_g <- tsAR4 | ||
#' tsAR4_g[gaps] <- NA | ||
#' | ||
#' plot(tsAR4, col = "green") | ||
#' lines(tsAR4_g, col = "blue") | ||
#' | ||
#' table(tsAR4_g > 0, useNA = "always") | ||
#' | ||
#' spAR4_ACF_g <- SpecACF(as.numeric(tsAR4_g), 1) | ||
#' spAR4_MTACF_g <- SpecACF(as.numeric(tsAR4_g), 1, nw = 8, k = 15) | ||
#' | ||
#' table(spAR4_ACF_g$spec < 0) | ||
#' table(spAR4_MTACF_g$spec < 0) | ||
#' | ||
#' gg_spec(list( | ||
#' `ACF gaps k=1` = spAR4_ACF_g, | ||
#' `ACF gaps k = 15` = spAR4_MTACF_g, | ||
#' `ACF full k = 15` = spAR4_MTACF | ||
#' ) | ||
#' ) | ||
SpecACF <- function(x, | ||
deltat = NULL, bin.width = NULL, | ||
k = 1, nw = 0, | ||
demean = TRUE, detrend = TRUE, | ||
TrimNA = TRUE, | ||
pos.f.only = TRUE, | ||
return.working = FALSE) { | ||
if (is.null(deltat) & is.null(bin.width) & is.ts(x) == FALSE) { | ||
stop("One of deltat or bin.width must be set") | ||
} | ||
|
||
# Convert ts to vector | ||
if (is.ts(x)){ | ||
if (is.ts(x)) { | ||
d <- dim(x) | ||
dt_ts <- deltat(x) | ||
|
||
x <- as.vector(x) | ||
|
||
if (is.null(d) == FALSE){ | ||
if (is.null(deltat) == FALSE) { | ||
if (dt_ts != deltat) stop("timeseries deltat does not match argument deltat") | ||
} | ||
|
||
if (is.null(bin.width) == FALSE) { | ||
if (dt_ts != bin.width) stop("timeseries deltat does not match argument bin.width") | ||
} | ||
|
||
if (is.null(deltat)) deltat <- dt_ts | ||
if (is.null(bin.width)) bin.width <- dt_ts | ||
|
||
if (is.null(d) == FALSE) { | ||
dim(x) <- d | ||
} | ||
} | ||
|
||
if (is.null(bin.width) & is.null(deltat) == FALSE) { | ||
bin.width <- deltat | ||
} | ||
|
||
if (is.null(bin.width) == FALSE & is.null(deltat)) { | ||
deltat <- bin.width | ||
} | ||
|
||
# Convert vector to matrix | ||
if (is.vector(x)){ | ||
if (is.vector(x)) { | ||
x <- matrix(x, ncol = 1) | ||
} | ||
|
||
if (is.data.frame(x) == TRUE){ | ||
if (is.data.frame(x) == TRUE) { | ||
x <- as.matrix(x) | ||
} | ||
|
||
if (TrimNA){ | ||
if (TrimNA) { | ||
x <- TrimNA(x) | ||
} | ||
|
||
if (detrend){ | ||
i <- seq_along(x[,1]) | ||
if (detrend) { | ||
i <- seq_along(x[, 1]) | ||
x <- apply(x, 2, function(y) { | ||
stats::residuals(stats::lm(y ~ i, na.action = "na.exclude")) | ||
}) | ||
} | ||
|
||
# remove mean from each record | ||
if (demean){ | ||
if (demean) { | ||
x <- x - colMeans(x, na.rm = TRUE) | ||
} | ||
|
||
lag = (0:(nrow(x)-1)) | ||
lag <- (0:(nrow(x) - 1)) | ||
|
||
if (return.working == TRUE){ | ||
working <- mean.ACF(x, return.working = TRUE) | ||
ncolx <- ncol(x) | ||
|
||
## Tapering | ||
if (k > 1) { | ||
n <- nrow(x) | ||
|
||
dpssIN <- multitaper:::dpss(n, | ||
k = k, nw = nw, | ||
returnEigenvalues = TRUE | ||
) | ||
dw <- dpssIN$v #* sqrt(bin.width) | ||
ev <- dpssIN$eigen | ||
|
||
x <- matrix(unlist(lapply(1:ncol(x), function(i) { | ||
lapply(1:ncol(dw), function(j) { | ||
x[, i] * dw[, j] | ||
}) | ||
})), nrow = nrow(x), byrow = FALSE) | ||
} | ||
|
||
if (return.working == TRUE) { | ||
working <- PaleoSpec:::mean.ACF(x, return.working = TRUE) | ||
acf <- working[["acf"]] | ||
} else{ | ||
acf <- mean.ACF(x) | ||
} else { | ||
acf <- PaleoSpec:::mean.ACF(x) | ||
} | ||
|
||
freq <- (lag / (nrow(x))) / bin.width | ||
|
||
if (k > 1){ | ||
spec <- Re(stats::fft(acf)) * bin.width * nrow(x) | ||
} else { | ||
spec <- Re(stats::fft(acf)) * bin.width | ||
} | ||
|
||
freq = (lag / (nrow(x))) / bin.width | ||
spec = Re(stats::fft(acf)) * bin.width | ||
|
||
rfreq = max(freq) | ||
|
||
if (pos.f.only){ | ||
spec <- spec[freq > 0 & freq <= 1/(2*bin.width)] | ||
freq <- freq[freq > 0 & freq <= 1/(2*bin.width)] | ||
|
||
rfreq <- max(freq) | ||
|
||
if (pos.f.only) { | ||
spec <- spec[freq > 0 & freq <= 1 / (2 * bin.width)] | ||
freq <- freq[freq > 0 & freq <= 1 / (2 * bin.width)] | ||
} | ||
|
||
out <- list(bin.width = bin.width, | ||
rfreq = rfreq, | ||
nrec = ncol(x), | ||
lag = lag, acf = acf, | ||
freq = freq, spec = spec, f.length = 1, | ||
dof = rep(2*ncol(x), length(freq))) | ||
out <- list( | ||
bin.width = bin.width, | ||
rfreq = rfreq, | ||
nrec = ncolx, | ||
lag = lag, acf = acf, | ||
freq = freq, spec = spec, f.length = 1, | ||
dof = rep(2 * ncolx * k, length(freq)) | ||
) | ||
|
||
class(out) <- c("SpecACF", "spec") | ||
class(out) <- c("SpecACF", "spec") | ||
|
||
if (return.working){ | ||
if (return.working) { | ||
out <- list(working = working, spec = out) | ||
} | ||
|
||
return(out) | ||
} | ||
|
||
|
Oops, something went wrong.