Skip to content

CreeperLin/PyTorch_ProxylessNAS

Repository files navigation

PyTorch_ProxylessNAS

Unofficial PyTorch implementation of: ProxylessNAS: Direct Neural Architecture Search on Target Task and Hardware.

Results

CIFAR-10

Paper Here
Model Parameters (M) 5.7 5.3
Top-1 Test Error (%) 2.08 2.72

Requirements

  • python 3
  • pyyaml
  • torch
  • torchvision
  • numpy
  • graphviz

Optional packages:

  • tensorboardX
  • adabound

Usage

Arch Search

python search.py -n <run_name> -c <config_path> -d <gpu_ids>

By default, checkpoints and genotypes are saved to 'chkpt/'

Augment

python augment.py -n <run_name> -c <config_path> -d <gpu_ids> -g <genotype_path>

Config

Run configs are specified in config/default.yaml

  • search: arch search run config
  • augment: augment run config
  • model: model specs.
  • genotypes: candidate operations in arch search
  • log: logging config

Reference

About

my implementation of ProxylessNAS

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published