Create a conda environment using the env.yml file
conda env create -f env.yml
Activate the environment and follow the instructions to install
Install nasbench (see https://github.com/google-research/nasbench)
Download the NDS data from https://github.com/facebookresearch/nds and place the json files in naswot-codebase/nds_data/ Download the NASbench101 data (see https://github.com/google-research/nasbench) Download the NASbench201 data (see https://github.com/D-X-Y/NAS-Bench-201)
Reproduce all of the results by running
./scorehook.sh
The code is licensed under the MIT licence.
If you use or build on our work, please consider citing us:
@inproceedings{mellor2021neural,
title={Neural Architecture Search without Training},
author={Joseph Mellor and Jack Turner and Amos Storkey and Elliot J. Crowley},
year={2021},
booktitle={International Conference on Machine Learning}
}