Swift-BigInt is a lightweight, and easy-to-use, arbitrary precision arithmetric library for Swift 5.
It supports whole Numbers (BInt) and Fractions (BDouble) with most of the common math operators. Optimized mathematical functions like factorial or gcd are also implemented and are accessible through BIntMath. For more details, please continue reading.
Some benchmarks are located in Benchmarks.swift, note that these are more than 10 times faster in the release mode, compared to the debug mode of Xcode.
One of the main goals of this library is to be lightweight and independent.
Simply drag and drop Swift-Big-Number-Core.swift
from the sources
folder into your project!
Yes, it's that easy :)
You can use the Swift Package Manager and specify the package dependency in your Package.swift
file by adding this:
.Package(url: "https://github.com/mkrd/Swift-Big-Integer.git", majorVersion: 1)
Put the following in your Podfile:
pod 'BigNumber', '~> 2.0', :git => 'https://github.com/mkrd/Swift-Big-Integer.git'
It is recommended to use Xcode 9+ and Swift 4+. Issues have been reported with older versions, so you might want to use an older version of this library if you can't update.
Here is a small example, to showcase some functionalities of this library. If you want to learn more, please continue reading the Usage section below.
let a = BInt(12)
let b = BInt("-10000000000000000000000000000000000000000000000000000000000000000")!
print(b)
>>> -10000000000000000000000000000000000000000000000000000000000000000
print(-a * b)
>>> 120000000000000000000000000000000000000000000000000000000000000000
print(BInt(200).factorial())
>>> 788657867364790503552363213932185062295135977687173263294742533244359449963403342920304284011984623904177212138919638830257642790242637105061926624952829931113462857270763317237396988943922445621451664240254033291864131227428294853277524242407573903240321257405579568660226031904170324062351700858796178922222789623703897374720000000000000000000000000000000000000000000000000
You initialize BInt with Int
, UInt
, and String
. If you use a String
, the initialized BInt
will be an optional type, which will be empty if the String
does not contain an valid number.
BInt(Int)
BInt(UInt)
BInt(String)?
BInt(String, radix: Int)?
let a = BInt(12)
print(a)
>>> 12
let b = BInt("-234324176583764598326758236587632649181349105368042856028465298620328782652623")
print(b!)
>>> -234324176583764598326758236587632649181349105368042856028465298620328782652623
let invalid = BInt("I'm not a number")
if let c = invalid {
print(c)
} else {
print("Not a valid number!")
}
>>> Not a valid number!
let d = BInt("fff", radix: 16)
print(d)
>>> 4095
let big = BInt("-143141341")!
big.description // Returns "-143141341"
=> print(big) // prints "-143141341"
big.toInt() // returns -143141341 (only works when Int.min <= big <= Int.max)
big.isPositive() // Returns false
big.isNegative() // Returns true
big.isZero() // Returns false
big.negate() // Returns noting, but negates the BInt (mutating func)
big.rawData() // Returns internal structure
// Operating on Int and BInt result in a typecast to BInt
// Addition
BIntOrInt + BIntOrInt // Returns BInt
BIntOrInt += BIntOrInt
//Subtraction
BIntOrInt - BIntOrInt // Returns BInt
BIntOrInt -= BIntOrInt
// Multiplication
BIntOrInt * BIntOrInt // Returns BInt
BIntOrInt *= BIntOrInt
// Exponentiation
BInt ** Int // Retuns BInt to the power of Int
// Modulo
BIntOrInt % BIntOrInt // Returns BInt
BInt %= BInt
// Division
BInt / BInt // Returns BInt
BInt /= BInt
// Comparing
BInt == BInt
BInt != BInt
BInt < BInt
BInt <= BInt
BInt > BInt
BInt >= BInt
fact(Int) // Returns factorial as BInt
gcd(BInt, BInt) // Returns greatest common divisor as BInt
lcm(BInt, BInt) // Returns lowest common multiple as BInt
permutations(BInt, BInt) // Returns BInt
combinations(BInt, BInt) // Returns BInt
BInt
has a typealias to Bignum
that is largely drop-in compatible with the OpenSSL-based Swift big number library. The following properties and operations are available on BInt
/Bignum
:
public var data: Data /// Representation as big-endian Data
public var dec: String /// Decimal string representation
public var hex: String /// Hexadecimal string representation
public init(hex: String) /// Initialise a new BInt from a hexadecimal string
public init(_ n: UInt64) /// Initialise from an unsigned, 64 bit integer
public init(data: Data) /// Initialise from big-endian Data
/// Combined exponentiation/modulo algorithm
///
/// - Parameters:
/// - b: base
/// - p: power
/// - m: modulus
/// - Returns: pow(b, p) % m
public func mod_exp(_ b: BInt, _ p: BInt, _ m: BInt) -> BInt
/// Non-negative modulo operation
///
/// - Parameters:
/// - a: left hand side of the module operation
/// - m: modulus
/// - Returns: r := a % b such that 0 <= r < abs(m)
public func nnmod(_ a: BInt, _ m: BInt) -> BInt
BDouble(Int)
BDouble(Double)
BDouble(String)?
BDouble(Int, over: Int)
BDouble(String, over: String)?
BDouble(String, radix: Int)?
let integer = BDouble(221)
let double = BDouble(1.192)
let fraction = BDouble(3, over: 4)
let stringFraction = BDouble("1" over: "3421342675925672365438867862653658268376582356831563158967")!
let bigD = BDouble(-12.32)
bigD.description // Returns "-308/25"
=> print(bigD) // prints "-308/25"
bigD.minimize() // Divides numerator and denominator by their gcd for storage and operation efficiency, usually not neccesary, because of automatic minimization
bigD.rawData() // Returns internal structure
// Needs more operators, interoperability with BInt
// Addition
BDouble + BDouble // Returns BDouble
// Subtraction
BDouble - BDouble // Returns BDouble
// Multiplication
BDouble * BDouble // Returns BDouble
// Division
BDouble / BDouble // Returns BDouble
// Comparing
BDouble < BDouble
/*
Important:
a < b <==> b > a
a <= b <==> b >= a
but:
a < b <==> !(a >= b)
a <= b <==> !(a > b)
*/
// More will follow
BInt about twice as fast as mini-gmp, as of now (not counting the normal gmp, because it needs to be installed and is not portable). For example, BInt can add numbers about 2 times faster than GMP (272ms vs 530ms for fib(100,000)), and multiplication is more than twice as fast. When given the task of calculating and printing factorials successively, BInt performs significantly better than GMP. In addition, GMP is significantly harder to use, while BInt offers an intuitive interface.
- Fork it!
- Create your feature branch:
git checkout -b my-new-feature
- Commit your changes:
git commit -am 'Add some feature'
- Push to the branch:
git push origin my-new-feature
- Submit a pull request :D