Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

CI: Re-enable benchmark model gradient checks / prettify gradient check output #2524

Merged
merged 1 commit into from
Oct 9, 2024
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
196 changes: 124 additions & 72 deletions tests/benchmark-models/test_petab_benchmark.py
Original file line number Diff line number Diff line change
Expand Up @@ -19,6 +19,7 @@
from fiddy.extensions.amici import simulate_petab_to_cached_functions
from fiddy.success import Consistency


repo_root = Path(__file__).parent.parent.parent

# reuse compiled models from test_benchmark_collection.sh
Expand All @@ -40,15 +41,9 @@
"Fujita_SciSignal2010",
# FIXME: re-enable
"Raia_CancerResearch2011",
"Zheng_PNAS2012",
}
models = list(sorted(models))

debug = False
if debug:
debug_path = Path(__file__).parent / "debug"
debug_path.mkdir(exist_ok=True, parents=True)


@dataclass
class GradientCheckSettings:
Expand All @@ -58,6 +53,10 @@ class GradientCheckSettings:
# Absolute and relative tolerances for finite difference gradient checks.
atol_check: float = 1e-3
rtol_check: float = 1e-2
# Absolute and relative tolerances for fiddy consistency check between
# forward/backward/central differences.
atol_consistency: float = 1e-5
rtol_consistency: float = 1e-1
# Step sizes for finite difference gradient checks.
step_sizes = [
1e-1,
Expand All @@ -68,50 +67,73 @@ class GradientCheckSettings:
1e-5,
]
rng_seed: int = 0
ss_sensitivity_mode: amici.SteadyStateSensitivityMode = (
amici.SteadyStateSensitivityMode.integrateIfNewtonFails
)
noise_level: float = 0.05


settings = defaultdict(GradientCheckSettings)
settings["Smith_BMCSystBiol2013"] = GradientCheckSettings(
atol_sim=1e-10,
rtol_sim=1e-10,
# NOTE: Newton method fails badly with ASA for Blasi_CellSystems2016
settings["Blasi_CellSystems2016"] = GradientCheckSettings(
atol_check=1e-12,
rtol_check=1e-4,
ss_sensitivity_mode=amici.SteadyStateSensitivityMode.integrationOnly,
)
settings["Borghans_BiophysChem1997"] = GradientCheckSettings(
rng_seed=2,
atol_check=1e-5,
rtol_check=1e-3,
)
settings["Brannmark_JBC2010"] = GradientCheckSettings(
ss_sensitivity_mode=amici.SteadyStateSensitivityMode.integrationOnly,
)
settings["Giordano_Nature2020"] = GradientCheckSettings(
atol_check=1e-6, rtol_check=1e-3, rng_seed=1
)
settings["Okuonghae_ChaosSolitonsFractals2020"] = GradientCheckSettings(
atol_sim=1e-14,
rtol_sim=1e-14,
noise_level=0.01,
atol_consistency=1e-3,
)
settings["Okuonghae_ChaosSolitonsFractals2020"].step_sizes.extend([0.2, 0.005])
settings["Oliveira_NatCommun2021"] = GradientCheckSettings(
# Avoid "root after reinitialization"
atol_sim=1e-12,
rtol_sim=1e-12,
)
settings["Okuonghae_ChaosSolitonsFractals2020"] = GradientCheckSettings(
atol_sim=1e-14,
rtol_sim=1e-14,
settings["Smith_BMCSystBiol2013"] = GradientCheckSettings(
atol_sim=1e-10,
rtol_sim=1e-10,
)
settings["Okuonghae_ChaosSolitonsFractals2020"].step_sizes.insert(0, 0.2)
settings["Giordano_Nature2020"] = GradientCheckSettings(
atol_check=1e-6, rtol_check=1e-3, rng_seed=1
settings["Sneyd_PNAS2002"] = GradientCheckSettings(
atol_sim=1e-15,
rtol_sim=1e-12,
atol_check=1e-5,
rtol_check=1e-4,
rng_seed=7,
)
settings["Weber_BMC2015"] = GradientCheckSettings(
atol_sim=1e-12,
rtol_sim=1e-12,
atol_check=1e-6,
rtol_check=1e-2,
rng_seed=1,
)
settings["Zheng_PNAS2012"] = GradientCheckSettings(
rng_seed=1,
rtol_sim=1e-15,
atol_check=5e-4,
rtol_check=4e-3,
noise_level=0.01,
)


def assert_gradient_check_success(
derivative: fiddy.Derivative,
expected_derivative: np.array,
point: np.array,
atol: float,
rtol: float,
) -> None:
if not derivative.df.success.all():
raise AssertionError(
f"Failed to compute finite differences:\n{derivative.df}"
)
check = NumpyIsCloseDerivativeCheck(
derivative=derivative,
expectation=expected_derivative,
point=point,
)
check_result = check(rtol=rtol, atol=atol)

if check_result.success is True:
return

raise AssertionError(f"Gradient check failed:\n{check_result.df}")
debug = False
if debug:
debug_path = Path(__file__).parent / "debug"
debug_path.mkdir(exist_ok=True, parents=True)


@pytest.mark.filterwarnings(
Expand All @@ -135,7 +157,7 @@ def test_benchmark_gradient(model, scale, sensitivity_method, request):
"Borghans_BiophysChem1997",
"Sneyd_PNAS2002",
"Bertozzi_PNAS2020",
"Okuonghae_ChaosSolitonsFractals2020",
"Zheng_PNAS2012",
):
# not really worth the effort trying to fix these cases if they
# only fail on linear scale
Expand All @@ -144,7 +166,6 @@ def test_benchmark_gradient(model, scale, sensitivity_method, request):
if (
model
in (
"Blasi_CellSystems2016",
# events with parameter-dependent triggers
# https://github.com/AMICI-dev/AMICI/issues/18
"Oliveira_NatCommun2021",
Expand All @@ -154,25 +175,11 @@ def test_benchmark_gradient(model, scale, sensitivity_method, request):
# FIXME
pytest.skip()

if (
model
in (
"Weber_BMC2015",
"Sneyd_PNAS2002",
)
and sensitivity_method == SensitivityMethod.forward
):
# FIXME
pytest.skip()

petab_problem = benchmark_models_petab.get_problem(model)
petab.flatten_timepoint_specific_output_overrides(petab_problem)

# Only compute gradient for estimated parameters.
parameter_df_free = petab_problem.parameter_df.loc[
petab_problem.x_free_ids
]
parameter_ids = list(parameter_df_free.index)
parameter_ids = petab_problem.x_free_ids
cur_settings = settings[model]

# Setup AMICI objects.
Expand All @@ -183,13 +190,10 @@ def test_benchmark_gradient(model, scale, sensitivity_method, request):
amici_solver = amici_model.getSolver()
amici_solver.setAbsoluteTolerance(cur_settings.atol_sim)
amici_solver.setRelativeTolerance(cur_settings.rtol_sim)
amici_solver.setMaxSteps(int(1e5))
amici_solver.setMaxSteps(2 * 10**5)
amici_solver.setSensitivityMethod(sensitivity_method)

if model in ("Brannmark_JBC2010",):
amici_model.setSteadyStateSensitivityMode(
amici.SteadyStateSensitivityMode.integrationOnly
)
# TODO: we should probably test all sensitivity modes
amici_model.setSteadyStateSensitivityMode(cur_settings.ss_sensitivity_mode)

amici_function, amici_derivative = simulate_petab_to_cached_functions(
petab_problem=petab_problem,
Expand All @@ -204,24 +208,20 @@ def test_benchmark_gradient(model, scale, sensitivity_method, request):
# cache=not debug,
cache=False,
)

noise_level = 0.1
np.random.seed(cur_settings.rng_seed)

# find a point where the derivative can be computed
for _ in range(5):
if scale:
point = np.asarray(
list(
petab_problem.scale_parameters(
dict(parameter_df_free.nominalValue)
).values()
)
point = petab_problem.x_nominal_free_scaled
point_noise = (
np.random.randn(len(point)) * cur_settings.noise_level
)
point_noise = np.random.randn(len(point)) * noise_level
else:
point = parameter_df_free.nominalValue.values
point_noise = np.random.randn(len(point)) * point * noise_level
point = petab_problem.x_nominal_free
point_noise = (
np.random.randn(len(point)) * point * cur_settings.noise_level
)
point += point_noise # avoid small gradients at nominal value

try:
Expand All @@ -239,11 +239,19 @@ def test_benchmark_gradient(model, scale, sensitivity_method, request):
sizes=cur_settings.step_sizes,
direction_ids=parameter_ids,
method_ids=[MethodId.CENTRAL, MethodId.FORWARD, MethodId.BACKWARD],
success_checker=Consistency(atol=1e-5, rtol=1e-1),
success_checker=Consistency(
rtol=cur_settings.rtol_consistency,
atol=cur_settings.atol_consistency,
),
expected_result=expected_derivative,
relative_sizes=not scale,
)

print()
print("Testing at:", point)
print("Expected derivative:", expected_derivative)
print("Print actual derivative:", derivative.series.values)

if debug:
write_debug_output(
debug_path / f"{request.node.callspec.id}.tsv",
Expand All @@ -258,9 +266,53 @@ def test_benchmark_gradient(model, scale, sensitivity_method, request):
point,
rtol=cur_settings.rtol_check,
atol=cur_settings.atol_check,
always_print=True,
)


def assert_gradient_check_success(
derivative: fiddy.Derivative,
expected_derivative: np.array,
point: np.array,
atol: float,
rtol: float,
always_print: bool = False,
) -> None:
if not derivative.df.success.all():
raise AssertionError(
f"Failed to compute finite differences:\n{derivative.df}"
)
check = NumpyIsCloseDerivativeCheck(
derivative=derivative,
expectation=expected_derivative,
point=point,
)
check_result = check(rtol=rtol, atol=atol)

if check_result.success is True and not always_print:
return

df = check_result.df
df["abs_diff"] = np.abs(df["expectation"] - df["test"])
df["rel_diff"] = df["abs_diff"] / np.abs(df["expectation"])
df["atol_success"] = df["abs_diff"] <= atol
df["rtol_success"] = df["rel_diff"] <= rtol
max_adiff = df["abs_diff"].max()
max_rdiff = df["rel_diff"].max()
with pd.option_context("display.max_columns", None, "display.width", None):
message = (
f"Gradient check failed:\n{df}\n\n"
f"Maximum absolute difference: {max_adiff} (tolerance: {atol})\n"
f"Maximum relative difference: {max_rdiff} (tolerance: {rtol})"
)

if check_result.success is False:
raise AssertionError(message)

if always_print:
print(message)


def write_debug_output(
file_name, derivative, expected_derivative, parameter_ids
):
Expand Down
Loading