-
Notifications
You must be signed in to change notification settings - Fork 88
/
README.Rmd
549 lines (421 loc) · 19.4 KB
/
README.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
---
output: github_document
---
```{r opts, include = FALSE}
knitr::opts_chunk$set(
cache = FALSE,
collapse = TRUE,
tidy = FALSE,
comment = "#>",
results = "hide",
message = FALSE,
warning = FALSE,
fig.path = "man/figures/",
fig.height = 5,
fig.width = 10,
fig.align = "center",
dpi = 300,
out.width = "100%"
)
```
# SCP: Single-Cell Pipeline
<!-- badges: start -->
[![version](https://img.shields.io/github/r-package/v/zhanghao-njmu/SCP)](https://github.com/zhanghao-njmu/SCP) [![codesize](https://img.shields.io/github/languages/code-size/zhanghao-njmu/SCP.svg)](https://github.com/zhanghao-njmu/SCP) [![license](https://img.shields.io/github/license/zhanghao-njmu/SCP)](https://github.com/zhanghao-njmu/SCP)
<!-- badges: end -->
SCP provides a comprehensive set of tools for single-cell data processing and downstream analysis.
The package includes the following facilities:
- Integrated single-cell quality control methods.
- Pipelines embedded with multiple methods for normalization, feature reduction, and cell population identification (standard Seurat workflow).
- Pipelines embedded with multiple integration methods for scRNA-seq or scATAC-seq data, including Uncorrected, [Seurat](https://github.com/satijalab/seurat), [scVI](https://github.com/scverse/scvi-tools), [MNN](http://www.bioconductor.org/packages/release/bioc/html/batchelor.html), [fastMNN](http://www.bioconductor.org/packages/release/bioc/html/batchelor.html), [Harmony](https://github.com/immunogenomics/harmony), [Scanorama](https://github.com/brianhie/scanorama), [BBKNN](https://github.com/Teichlab/bbknn), [CSS](https://github.com/quadbiolab/simspec), [LIGER](https://github.com/welch-lab/liger), [Conos](https://github.com/kharchenkolab/conos), [ComBat](https://bioconductor.org/packages/release/bioc/html/sva.html).
- Multiple single-cell downstream analyses such as identification of differential features, enrichment analysis, GSEA analysis, identification of dynamic features, [PAGA](https://github.com/theislab/paga), [RNA velocity](https://github.com/theislab/scvelo), [Palantir](https://github.com/dpeerlab/Palantir), [Monocle2](http://cole-trapnell-lab.github.io/monocle-release), [Monocle3](https://cole-trapnell-lab.github.io/monocle3), etc.
- Multiple methods for automatic annotation of single-cell data and methods for projection between single-cell datasets.
- High-quality data visualization methods.
- Fast deployment of single-cell data into SCExplorer, a [shiny app](https://shiny.rstudio.com/) that provides an interactive visualization interface.
The functions in the SCP package are all developed around the [Seurat object](https://github.com/mojaveazure/seurat-object) and are compatible with other Seurat functions.
## R version requirement
- R \>= 4.1.0
## Installation in the global R environment
You can install the latest version of SCP from [GitHub](https://github.com/zhanghao-njmu/SCP) with:
```{r install, eval=FALSE}
if (!require("devtools", quietly = TRUE)) {
install.packages("devtools")
}
devtools::install_github("zhanghao-njmu/SCP")
```
#### Create a python environment for SCP
To run functions such as `RunPAGA` or `RunSCVELO`, SCP requires [conda](https://docs.conda.io/en/latest/miniconda.html) to create a separate python environment. The default environment name is `"SCP_env"`. You can specify the environment name for SCP by setting `options(SCP_env_name="new_name")`
Now, you can run `PrepareEnv()` to create the python environment for SCP. If the conda binary is not found, it will automatically download and install miniconda.
```{r eval=FALSE}
SCP::PrepareEnv()
```
To force SCP to use a specific conda binary, it is recommended to set `reticulate.conda_binary` R option:
```{r eval=FALSE}
options(reticulate.conda_binary = "/path/to/conda")
SCP::PrepareEnv()
```
If the download of miniconda or pip packages is slow, you can specify the miniconda repo and PyPI mirror according to your network region.
```{r eval=FALSE}
SCP::PrepareEnv(
miniconda_repo = "https://mirrors.bfsu.edu.cn/anaconda/miniconda",
pip_options = "-i https://pypi.tuna.tsinghua.edu.cn/simple"
)
```
Available miniconda repositories:
- <https://repo.anaconda.com/miniconda> (default)
- <http://mirrors.aliyun.com/anaconda/miniconda>
- <https://mirrors.bfsu.edu.cn/anaconda/miniconda>
- <https://mirrors.pku.edu.cn/anaconda/miniconda>
- <https://mirror.nju.edu.cn/anaconda/miniconda>
- <https://mirrors.sustech.edu.cn/anaconda/miniconda>
- <https://mirrors.xjtu.edu.cn/anaconda/miniconda>
- <https://mirrors.hit.edu.cn/anaconda/miniconda>
Available PyPI mirrors:
- <https://pypi.python.org/simple> (default)
- <https://mirrors.aliyun.com/pypi/simple>
- <https://pypi.tuna.tsinghua.edu.cn/simple>
- <https://mirrors.pku.edu.cn/pypi/simple>
- <https://mirror.nju.edu.cn/pypi/web/simple>
- <https://mirrors.sustech.edu.cn/pypi/simple>
- <https://mirrors.xjtu.edu.cn/pypi/simple>
- <https://mirrors.hit.edu.cn/pypi/web/simple>
## Installation in an isolated R environment using renv
If you do not want to change your current R environment or require reproducibility, you can use the [renv](https://rstudio.github.io/renv/) package to install SCP into an isolated R environment.
#### Create an isolated R environment
```{r eval=FALSE}
if (!require("renv", quietly = TRUE)) {
install.packages("renv")
}
dir.create("~/SCP_env", recursive = TRUE) # It cannot be the home directory "~" !
renv::init(project = "~/SCP_env", bare = TRUE, restart = TRUE)
```
Option 1: Install SCP from GitHub and create SCP python environment
```{r eval=FALSE}
renv::activate(project = "~/SCP_env")
renv::install("BiocManager")
renv::install("zhanghao-njmu/SCP", repos = BiocManager::repositories())
SCP::PrepareEnv()
```
Option 2: If SCP is already installed in the global environment, copy SCP from the local library
```{r eval=FALSE}
renv::activate(project = "~/SCP_env")
renv::hydrate("SCP")
SCP::PrepareEnv()
```
#### Activate SCP environment first before use
```{r eval=FALSE}
renv::activate(project = "~/SCP_env")
library(SCP)
data("pancreas_sub")
pancreas_sub <- RunPAGA(srt = pancreas_sub, group_by = "SubCellType", linear_reduction = "PCA", nonlinear_reduction = "UMAP")
CellDimPlot(pancreas_sub, group.by = "SubCellType", reduction = "draw_graph_fr")
```
#### Save and restore the state of SCP environment
```{r eval=FALSE}
renv::snapshot(project = "~/SCP_env")
renv::restore(project = "~/SCP_env")
```
## Quick Start
- [Data exploration]
- [CellQC]
- [Standard pipeline]
- [Integration pipeline]
- [Cell projection between single-cell datasets]
- [Cell annotation using bulk RNA-seq datasets]
- [Cell annotation using single-cell datasets]
- [PAGA analysis]
- [Velocity analysis]
- [Differential expression analysis]
- [Enrichment analysis(over-representation)](#enrichment-analysisover-representation)
- [Enrichment analysis(GSEA)](#enrichment-analysisgsea)
- [Trajectory inference]
- [Dynamic features]
- [Interactive data visualization with SCExplorer]
- [Other visualization examples]
### Data exploration
The analysis is based on a subsetted version of [mouse pancreas data](https://doi.org/10.1242/dev.173849).
```{r library,results='markup'}
library(SCP)
library(BiocParallel)
register(MulticoreParam(workers = 8, progressbar = TRUE))
data("pancreas_sub")
print(pancreas_sub)
```
```{r EDA}
CellDimPlot(
srt = pancreas_sub, group.by = c("CellType", "SubCellType"),
reduction = "UMAP", theme_use = "theme_blank"
)
CellDimPlot(
srt = pancreas_sub, group.by = "SubCellType", stat.by = "Phase",
reduction = "UMAP", theme_use = "theme_blank"
)
FeatureDimPlot(
srt = pancreas_sub, features = c("Sox9", "Neurog3", "Fev", "Rbp4"),
reduction = "UMAP", theme_use = "theme_blank"
)
FeatureDimPlot(
srt = pancreas_sub, features = c("Ins1", "Gcg", "Sst", "Ghrl"),
compare_features = TRUE, label = TRUE, label_insitu = TRUE,
reduction = "UMAP", theme_use = "theme_blank"
)
ht <- GroupHeatmap(
srt = pancreas_sub,
features = c(
"Sox9", "Anxa2", # Ductal
"Neurog3", "Hes6", # EPs
"Fev", "Neurod1", # Pre-endocrine
"Rbp4", "Pyy", # Endocrine
"Ins1", "Gcg", "Sst", "Ghrl" # Beta, Alpha, Delta, Epsilon
),
group.by = c("CellType", "SubCellType"),
heatmap_palette = "YlOrRd",
cell_annotation = c("Phase", "G2M_score", "Cdh2"),
cell_annotation_palette = c("Dark2", "Paired", "Paired"),
show_row_names = TRUE, row_names_side = "left",
add_dot = TRUE, add_reticle = TRUE
)
print(ht$plot)
```
### CellQC
```{r RunCellQC}
pancreas_sub <- RunCellQC(srt = pancreas_sub)
CellDimPlot(srt = pancreas_sub, group.by = "CellQC", reduction = "UMAP")
CellStatPlot(srt = pancreas_sub, stat.by = "CellQC", group.by = "CellType", label = TRUE)
CellStatPlot(
srt = pancreas_sub,
stat.by = c(
"db_qc", "outlier_qc", "umi_qc", "gene_qc",
"mito_qc", "ribo_qc", "ribo_mito_ratio_qc", "species_qc"
),
plot_type = "upset", stat_level = "Fail"
)
```
### Standard pipeline
```{r Standard_SCP}
pancreas_sub <- Standard_SCP(srt = pancreas_sub)
CellDimPlot(
srt = pancreas_sub, group.by = c("CellType", "SubCellType"),
reduction = "StandardUMAP2D", theme_use = "theme_blank"
)
```
```{r CellDimPlot3D,eval=FALSE}
CellDimPlot3D(srt = pancreas_sub, group.by = "SubCellType")
```
![CellDimPlot3D](man/figures/CellDimPlot3D-1.png)
```{r FeatureDimPlot3D,eval=FALSE}
FeatureDimPlot3D(srt = pancreas_sub, features = c("Sox9", "Neurog3", "Fev", "Rbp4"))
```
![FeatureDimPlot3D](man/figures/FeatureDimPlot3D-1.png)
### Integration pipeline
Example data for integration is a subsetted version of [panc8(eight human pancreas datasets)](https://github.com/satijalab/seurat-data)
```{r Integration_SCP}
data("panc8_sub")
panc8_sub <- Integration_SCP(srtMerge = panc8_sub, batch = "tech", integration_method = "Seurat")
CellDimPlot(
srt = panc8_sub, group.by = c("celltype", "tech"), reduction = "SeuratUMAP2D",
title = "Seurat", theme_use = "theme_blank"
)
```
UMAP embeddings based on different integration methods in SCP:
```{r Integration-all, echo=FALSE, fig.height=13.5, fig.width=8.5,eval=FALSE}
library(ggplot2)
library(cowplot)
library(gtable)
integration_methods <- c("Uncorrected", "Seurat", "scVI", "MNN", "fastMNN", "Harmony", "Scanorama", "BBKNN", "CSS", "LIGER", "Conos", "ComBat")
plist <- list()
for (method in integration_methods) {
panc8_sub <- Integration_SCP(
srtMerge = panc8_sub, batch = "tech", linear_reduction_dims_use = 1:50,
integration_method = method, nonlinear_reduction = "umap"
)
plist[[method]] <- CellDimPlot(panc8_sub,
title = method, group.by = c("celltype"), reduction = paste0(method, "UMAP2D"), theme_use = "theme_blank",
xlab = "UMAP_1", ylab = "UMAP_2", legend.position = "none"
)
}
p <- plot_grid(plotlist = plist, ncol = 3)
grob <- ggplotGrob(p)
legend <- get_legend(CellDimPlot(panc8_sub, group.by = c("celltype"), reduction = paste0(method, "UMAP2D"), theme_use = "theme_blank", legend.position = "bottom", legend.direction = "horizontal"))
grob <- gtable_add_rows(grob, sum(legend$heights) + unit(1, "cm"), 0)
grob <- gtable_add_grob(grob, legend, t = 1, l = min(grob$layout[grepl(pattern = "panel", x = grob$layout$name), "l"]))
panel_fix(grob, height = 2)
```
![Integration-all](man/figures/Integration-all.png)
### Cell projection between single-cell datasets
```{r RunKNNMap}
panc8_rename <- RenameFeatures(
srt = panc8_sub,
newnames = make.unique(capitalize(rownames(panc8_sub[["RNA"]]), force_tolower = TRUE)),
assays = "RNA"
)
srt_query <- RunKNNMap(srt_query = pancreas_sub, srt_ref = panc8_rename, ref_umap = "SeuratUMAP2D")
ProjectionPlot(
srt_query = srt_query, srt_ref = panc8_rename,
query_group = "SubCellType", ref_group = "celltype"
)
```
### Cell annotation using bulk RNA-seq datasets
```{r RunKNNPredict-bulk}
data("ref_scMCA")
pancreas_sub <- RunKNNPredict(srt_query = pancreas_sub, bulk_ref = ref_scMCA, filter_lowfreq = 20)
CellDimPlot(srt = pancreas_sub, group.by = "KNNPredict_classification", reduction = "UMAP", label = TRUE)
```
### Cell annotation using single-cell datasets
```{r RunKNNPredict-scrna}
pancreas_sub <- RunKNNPredict(
srt_query = pancreas_sub, srt_ref = panc8_rename,
ref_group = "celltype", filter_lowfreq = 20
)
CellDimPlot(srt = pancreas_sub, group.by = "KNNPredict_classification", reduction = "UMAP", label = TRUE)
pancreas_sub <- RunKNNPredict(
srt_query = pancreas_sub, srt_ref = panc8_rename,
query_group = "SubCellType", ref_group = "celltype",
return_full_distance_matrix = TRUE
)
CellDimPlot(srt = pancreas_sub, group.by = "KNNPredict_classification", reduction = "UMAP", label = TRUE)
ht <- CellCorHeatmap(
srt_query = pancreas_sub, srt_ref = panc8_rename,
query_group = "SubCellType", ref_group = "celltype",
nlabel = 3, label_by = "row",
show_row_names = TRUE, show_column_names = TRUE
)
print(ht$plot)
```
### PAGA analysis
```{r RunPAGA}
pancreas_sub <- RunPAGA(
srt = pancreas_sub, group_by = "SubCellType",
linear_reduction = "PCA", nonlinear_reduction = "UMAP"
)
PAGAPlot(srt = pancreas_sub, reduction = "UMAP", label = TRUE, label_insitu = TRUE, label_repel = TRUE)
```
### Velocity analysis
> To estimate RNA velocity, you need to have both "spliced" and "unspliced" assays in your Seurat object. You can generate these matrices using [velocyto](http://velocyto.org/velocyto.py/index.html), [bustools](https://bustools.github.io/BUS_notebooks_R/velocity.html), or [alevin](https://combine-lab.github.io/alevin-fry-tutorials/2021/alevin-fry-velocity/).
```{r RunSCVELO}
pancreas_sub <- RunSCVELO(
srt = pancreas_sub, group_by = "SubCellType",
linear_reduction = "PCA", nonlinear_reduction = "UMAP"
)
VelocityPlot(srt = pancreas_sub, reduction = "UMAP", group_by = "SubCellType")
VelocityPlot(srt = pancreas_sub, reduction = "UMAP", plot_type = "stream")
```
### Differential expression analysis
```{r RunDEtest,fig.height=6, fig.width=12}
pancreas_sub <- RunDEtest(srt = pancreas_sub, group_by = "CellType", fc.threshold = 1, only.pos = FALSE)
VolcanoPlot(srt = pancreas_sub, group_by = "CellType")
```
```{r FeatureHeatmap, fig.height=6, fig.width=18}
DEGs <- pancreas_sub@tools$DEtest_CellType$AllMarkers_wilcox
DEGs <- DEGs[with(DEGs, avg_log2FC > 1 & p_val_adj < 0.05), ]
# Annotate features with transcription factors and surface proteins
pancreas_sub <- AnnotateFeatures(pancreas_sub, species = "Mus_musculus", db = c("TF", "CSPA"))
ht <- FeatureHeatmap(
srt = pancreas_sub, group.by = "CellType", features = DEGs$gene, feature_split = DEGs$group1,
species = "Mus_musculus", db = c("GO_BP", "KEGG", "WikiPathway"), anno_terms = TRUE,
feature_annotation = c("TF", "CSPA"), feature_annotation_palcolor = list(c("gold", "steelblue"), c("forestgreen")),
height = 5, width = 4
)
print(ht$plot)
```
### Enrichment analysis(over-representation) {#enrichment-analysisover-representation}
```{r RunEnrichment}
pancreas_sub <- RunEnrichment(
srt = pancreas_sub, group_by = "CellType", db = "GO_BP", species = "Mus_musculus",
DE_threshold = "avg_log2FC > log2(1.5) & p_val_adj < 0.05"
)
EnrichmentPlot(
srt = pancreas_sub, group_by = "CellType", group_use = c("Ductal", "Endocrine"),
plot_type = "bar"
)
EnrichmentPlot(
srt = pancreas_sub, group_by = "CellType", group_use = c("Ductal", "Endocrine"),
plot_type = "wordcloud"
)
EnrichmentPlot(
srt = pancreas_sub, group_by = "CellType", group_use = c("Ductal", "Endocrine"),
plot_type = "wordcloud", word_type = "feature"
)
EnrichmentPlot(
srt = pancreas_sub, group_by = "CellType", group_use = "Ductal",
plot_type = "network"
)
```
> To ensure that labels are visible, you can adjust the size of the viewer panel on Rstudio IDE.
```{r Enrichment_enrichmap, fig.height=9.5, fig.width=15}
EnrichmentPlot(
srt = pancreas_sub, group_by = "CellType", group_use = "Ductal",
plot_type = "enrichmap"
)
```
```{r Enrichment_comparison, fig.height=6}
EnrichmentPlot(srt = pancreas_sub, group_by = "CellType", plot_type = "comparison")
```
### Enrichment analysis(GSEA) {#enrichment-analysisgsea}
```{r RunGSEA}
pancreas_sub <- RunGSEA(
srt = pancreas_sub, group_by = "CellType", db = "GO_BP", species = "Mus_musculus",
DE_threshold = "p_val_adj < 0.05"
)
GSEAPlot(srt = pancreas_sub, group_by = "CellType", group_use = "Endocrine", id_use = "GO:0007186")
```
```{r GSEA_bar}
GSEAPlot(
srt = pancreas_sub, group_by = "CellType", group_use = "Endocrine", plot_type = "bar",
direction = "both", topTerm = 20
)
```
```{r GSEA_comparison, fig.height=6}
GSEAPlot(srt = pancreas_sub, group_by = "CellType", plot_type = "comparison")
```
### Trajectory inference
```{r RunSlingshot}
pancreas_sub <- RunSlingshot(srt = pancreas_sub, group.by = "SubCellType", reduction = "UMAP")
FeatureDimPlot(pancreas_sub, features = paste0("Lineage", 1:3), reduction = "UMAP", theme_use = "theme_blank")
CellDimPlot(pancreas_sub, group.by = "SubCellType", reduction = "UMAP", lineages = paste0("Lineage", 1:3), lineages_span = 0.1)
```
### Dynamic features
```{r DynamicHeatmap, fig.height=9, fig.width=18}
pancreas_sub <- RunDynamicFeatures(srt = pancreas_sub, lineages = c("Lineage1", "Lineage2"), n_candidates = 200)
ht <- DynamicHeatmap(
srt = pancreas_sub, lineages = c("Lineage1", "Lineage2"),
use_fitted = TRUE, n_split = 6, reverse_ht = "Lineage1",
species = "Mus_musculus", db = "GO_BP", anno_terms = TRUE, anno_keys = TRUE, anno_features = TRUE,
heatmap_palette = "viridis", cell_annotation = "SubCellType",
separate_annotation = list("SubCellType", c("Nnat", "Irx1")), separate_annotation_palette = c("Paired", "Set1"),
feature_annotation = c("TF", "CSPA"), feature_annotation_palcolor = list(c("gold", "steelblue"), c("forestgreen")),
pseudotime_label = 25, pseudotime_label_color = "red",
height = 5, width = 2
)
print(ht$plot)
```
```{r DynamicPlot}
DynamicPlot(
srt = pancreas_sub, lineages = c("Lineage1", "Lineage2"), group.by = "SubCellType",
features = c("Plk1", "Hes1", "Neurod2", "Ghrl", "Gcg", "Ins2"),
compare_lineages = TRUE, compare_features = FALSE
)
```
```{r FeatureStatPlot, fig.height=6, fig.width=13}
FeatureStatPlot(
srt = pancreas_sub, group.by = "SubCellType", bg.by = "CellType",
stat.by = c("Sox9", "Neurod2", "Isl1", "Rbp4"), add_box = TRUE,
comparisons = list(
c("Ductal", "Ngn3 low EP"),
c("Ngn3 high EP", "Pre-endocrine"),
c("Alpha", "Beta")
)
)
```
### Interactive data visualization with SCExplorer
```{r SCExplorer}
PrepareSCExplorer(list(mouse_pancreas = pancreas_sub, human_pancreas = panc8_sub), base_dir = "./SCExplorer")
app <- RunSCExplorer(base_dir = "./SCExplorer")
list.files("./SCExplorer") # This directory can be used as site directory for Shiny Server.
if (interactive()) {
shiny::runApp(app)
}
```
![SCExplorer1](man/figures/SCExplorer-1.png) ![SCExplorer2](man/figures/SCExplorer-2.png)
### Other visualization examples
[**CellDimPlot**](https://zhanghao-njmu.github.io/SCP/reference/CellDimPlot.html)![Example1](man/figures/Example-1.jpg) [**CellStatPlot**](https://zhanghao-njmu.github.io/SCP/reference/CellStatPlot.html)![Example2](man/figures/Example-2.jpg) [**FeatureStatPlot**](https://zhanghao-njmu.github.io/SCP/reference/FeatureStatPlot.html)![Example3](man/figures/Example-3.jpg) [**GroupHeatmap**](https://zhanghao-njmu.github.io/SCP/reference/GroupHeatmap.html)![Example3](man/figures/Example-4.jpg)
You can also find more examples in the documentation of the function: [Integration_SCP](https://zhanghao-njmu.github.io/SCP/reference/Integration_SCP.html), [RunKNNMap](https://zhanghao-njmu.github.io/SCP/reference/RunKNNMap.html), [RunMonocle3](https://zhanghao-njmu.github.io/SCP/reference/RunMonocle3.html), [RunPalantir](https://zhanghao-njmu.github.io/SCP/reference/RunPalantir.html), etc.