-
Notifications
You must be signed in to change notification settings - Fork 36
/
models.py
193 lines (164 loc) · 7.23 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
import math
import torch
from torch import nn
from torch.nn import TransformerEncoder
import torch.nn.functional as F
from layers import MFCC, Attention, LinearNorm, ConvNorm, ConvBlock
def build_model(model_params={}, model_type='asr'):
model = ASRCNN(**model_params)
return model
class ASRCNN(nn.Module):
def __init__(self,
input_dim=80,
hidden_dim=256,
n_token=35,
n_layers=6,
token_embedding_dim=256,
):
super().__init__()
self.n_token = n_token
self.n_down = 1
self.to_mfcc = MFCC()
self.init_cnn = ConvNorm(input_dim//2, hidden_dim, kernel_size=7, padding=3, stride=2)
self.cnns = nn.Sequential(
*[nn.Sequential(
ConvBlock(hidden_dim),
nn.GroupNorm(num_groups=1, num_channels=hidden_dim)
) for n in range(n_layers)])
self.projection = ConvNorm(hidden_dim, hidden_dim // 2)
self.ctc_linear = nn.Sequential(
LinearNorm(hidden_dim//2, hidden_dim),
nn.ReLU(),
LinearNorm(hidden_dim, n_token))
self.asr_s2s = ASRS2S(
embedding_dim=token_embedding_dim,
hidden_dim=hidden_dim//2,
n_token=n_token)
def forward(self, x, src_key_padding_mask=None, text_input=None):
x = self.to_mfcc(x)
x = self.init_cnn(x)
x = self.cnns(x)
x = self.projection(x)
x = x.transpose(1, 2)
ctc_logit = self.ctc_linear(x)
if text_input is not None:
_, s2s_logit, s2s_attn = self.asr_s2s(x, src_key_padding_mask, text_input)
return ctc_logit, s2s_logit, s2s_attn
else:
return ctc_logit
def get_feature(self, x):
x = self.to_mfcc(x)
x = self.init_cnn(x)
x = self.cnns(x)
x = self.instance_norm(x)
x = self.projection(x)
return x
def length_to_mask(self, lengths):
mask = torch.arange(lengths.max()).unsqueeze(0).expand(lengths.shape[0], -1).type_as(lengths)
mask = torch.gt(mask+1, lengths.unsqueeze(1)).to(lengths.device)
return mask
def get_future_mask(self, out_length, unmask_future_steps=0):
"""
Args:
out_length (int): returned mask shape is (out_length, out_length).
unmask_futre_steps (int): unmasking future step size.
Return:
mask (torch.BoolTensor): mask future timesteps mask[i, j] = True if i > j + unmask_future_steps else False
"""
index_tensor = torch.arange(out_length).unsqueeze(0).expand(out_length, -1)
mask = torch.gt(index_tensor, index_tensor.T + unmask_future_steps)
return mask
class ASRS2S(nn.Module):
def __init__(self,
embedding_dim=256,
hidden_dim=512,
n_location_filters=32,
location_kernel_size=63,
n_token=40):
super(ASRS2S, self).__init__()
self.embedding = nn.Embedding(n_token, embedding_dim)
val_range = math.sqrt(6 / hidden_dim)
self.embedding.weight.data.uniform_(-val_range, val_range)
self.decoder_rnn_dim = hidden_dim
self.project_to_n_symbols = nn.Linear(self.decoder_rnn_dim, n_token)
self.attention_layer = Attention(
self.decoder_rnn_dim,
hidden_dim,
hidden_dim,
n_location_filters,
location_kernel_size
)
self.decoder_rnn = nn.LSTMCell(self.decoder_rnn_dim + embedding_dim, self.decoder_rnn_dim)
self.project_to_hidden = nn.Sequential(
LinearNorm(self.decoder_rnn_dim * 2, hidden_dim),
nn.Tanh())
self.sos = 1
self.eos = 2
def initialize_decoder_states(self, memory, mask):
"""
moemory.shape = (B, L, H) = (Batchsize, Maxtimestep, Hiddendim)
"""
B, L, H = memory.shape
self.decoder_hidden = torch.zeros((B, self.decoder_rnn_dim)).type_as(memory)
self.decoder_cell = torch.zeros((B, self.decoder_rnn_dim)).type_as(memory)
self.attention_weights = torch.zeros((B, L)).type_as(memory)
self.attention_weights_cum = torch.zeros((B, L)).type_as(memory)
self.attention_context = torch.zeros((B, H)).type_as(memory)
self.memory = memory
self.processed_memory = self.attention_layer.memory_layer(memory)
self.mask = mask
self.unk_index = 3
self.random_mask = 0.1
def forward(self, memory, memory_mask, text_input):
"""
moemory.shape = (B, L, H) = (Batchsize, Maxtimestep, Hiddendim)
moemory_mask.shape = (B, L, )
texts_input.shape = (B, T)
"""
self.initialize_decoder_states(memory, memory_mask)
# text random mask
random_mask = (torch.rand(text_input.shape) < self.random_mask).to(text_input.device)
_text_input = text_input.clone()
_text_input.masked_fill_(random_mask, self.unk_index)
decoder_inputs = self.embedding(_text_input).transpose(0, 1) # -> [T, B, channel]
start_embedding = self.embedding(
torch.LongTensor([self.sos]*decoder_inputs.size(1)).to(decoder_inputs.device))
decoder_inputs = torch.cat((start_embedding.unsqueeze(0), decoder_inputs), dim=0)
hidden_outputs, logit_outputs, alignments = [], [], []
while len(hidden_outputs) < decoder_inputs.size(0):
decoder_input = decoder_inputs[len(hidden_outputs)]
hidden, logit, attention_weights = self.decode(decoder_input)
hidden_outputs += [hidden]
logit_outputs += [logit]
alignments += [attention_weights]
hidden_outputs, logit_outputs, alignments = \
self.parse_decoder_outputs(
hidden_outputs, logit_outputs, alignments)
return hidden_outputs, logit_outputs, alignments
def decode(self, decoder_input):
cell_input = torch.cat((decoder_input, self.attention_context), -1)
self.decoder_hidden, self.decoder_cell = self.decoder_rnn(
cell_input,
(self.decoder_hidden, self.decoder_cell))
attention_weights_cat = torch.cat(
(self.attention_weights.unsqueeze(1),
self.attention_weights_cum.unsqueeze(1)),dim=1)
self.attention_context, self.attention_weights = self.attention_layer(
self.decoder_hidden,
self.memory,
self.processed_memory,
attention_weights_cat,
self.mask)
self.attention_weights_cum += self.attention_weights
hidden_and_context = torch.cat((self.decoder_hidden, self.attention_context), -1)
hidden = self.project_to_hidden(hidden_and_context)
# dropout to increasing g
logit = self.project_to_n_symbols(F.dropout(hidden, 0.5, self.training))
return hidden, logit, self.attention_weights
def parse_decoder_outputs(self, hidden, logit, alignments):
# -> [B, T_out + 1, max_time]
alignments = torch.stack(alignments).transpose(0,1)
# [T_out + 1, B, n_symbols] -> [B, T_out + 1, n_symbols]
logit = torch.stack(logit).transpose(0, 1).contiguous()
hidden = torch.stack(hidden).transpose(0, 1).contiguous()
return hidden, logit, alignments