You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
$ python collect_env.py
/workspace/my-vllm/lib64/python3.12/site-packages/transformers/utils/hub.py:128: FutureWarning: Using TRANSFORMERS_CACHE is deprecated and will be removed in v5 of Transformers. Use HF_HOME instead.
warnings.warn(
Collecting environment information...
PyTorch version: 2.5.1+cu124
Is debug build: False
CUDA used to build PyTorch: 12.4
ROCM used to build PyTorch: N/A
OS: Red Hat Enterprise Linux 9.5 (Plow) (x86_64)
GCC version: (GCC) 11.5.0 20240719 (Red Hat 11.5.0-2)
Clang version: Could not collect
CMake version: Could not collect
Libc version: glibc-2.34
Python version: 3.12.5 (main, Sep 11 2024, 00:00:00) [GCC 11.5.0 20240719 (Red Hat 11.5.0-2)] (64-bit runtime)
Python platform: Linux-5.14.0-284.88.1.el9_2.x86_64-x86_64-with-glibc2.34
Is CUDA available: True
CUDA runtime version: Could not collect
CUDA_MODULE_LOADING set to: LAZY
GPU models and configuration:
GPU 0: NVIDIA A100-SXM4-80GB
GPU 1: NVIDIA A100-SXM4-80GB
GPU 2: NVIDIA A100-SXM4-80GB
GPU 3: NVIDIA A100-SXM4-80GB
Nvidia driver version: 535.104.12
cuDNN version: Could not collect
HIP runtime version: N/A
MIOpen runtime version: N/A
Is XNNPACK available: True
CPU:
Architecture: x86_64
CPU op-mode(s): 32-bit, 64-bit
Address sizes: 46 bits physical, 57 bits virtual
Byte Order: Little Endian
CPU(s): 80
On-line CPU(s) list: 0-79
Vendor ID: GenuineIntel
Model name: Intel Xeon Processor (Icelake)
CPU family: 6
Model: 134
Thread(s) per core: 2
Core(s) per socket: 20
Socket(s): 2
Stepping: 0
BogoMIPS: 5600.02
Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ss ht syscall nx pdpe1gb rdtscp lm constant_tsc rep_good nopl xtopology cpuid tsc_known_freq pni pclmulqdq vmx ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand hypervisor lahf_lm abm 3dnowprefetch cpuid_fault invpcid_single ssbd ibrs ibpb stibp ibrs_enhanced tpr_shadow vnmi flexpriority ept vpid ept_ad fsgsbase tsc_adjust bmi1 avx2 smep bmi2 erms invpcid avx512f avx512dq rdseed adx smap avx512ifma clflushopt clwb avx512cd sha_ni avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves wbnoinvd arat avx512vbmi umip pku ospke avx512_vbmi2 gfni vaes vpclmulqdq avx512_vnni avx512_bitalg avx512_vpopcntdq la57 rdpid fsrm md_clear arch_capabilities
Virtualization: VT-x
Hypervisor vendor: KVM
Virtualization type: full
L1d cache: 2.5 MiB (80 instances)
L1i cache: 2.5 MiB (80 instances)
L2 cache: 160 MiB (40 instances)
L3 cache: 32 MiB (2 instances)
NUMA node(s): 2
NUMA node0 CPU(s): 0-39
NUMA node1 CPU(s): 40-79
Vulnerability Gather data sampling: Not affected
Vulnerability Itlb multihit: Not affected
Vulnerability L1tf: Not affected
Vulnerability Mds: Not affected
Vulnerability Meltdown: Not affected
Vulnerability Mmio stale data: Vulnerable: Clear CPU buffers attempted, no microcode; SMT Host state unknown
Vulnerability Reg file data sampling: Vulnerable: No microcode
Vulnerability Retbleed: Not affected
Vulnerability Spec rstack overflow: Not affected
Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl
Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization
Vulnerability Spectre v2: Mitigation; Enhanced IBRS, IBPB conditional, RSB filling, PBRSB-eIBRS Not affected
Vulnerability Srbds: Not affected
Vulnerability Tsx async abort: Not affected
Versions of relevant libraries:
[pip3] flashinfer==0.1.6+cu124torch2.4
[pip3] numpy==1.26.4
[pip3] nvidia-cublas-cu12==12.4.5.8
[pip3] nvidia-cuda-cupti-cu12==12.4.127
[pip3] nvidia-cuda-nvrtc-cu12==12.4.127
[pip3] nvidia-cuda-runtime-cu12==12.4.127
[pip3] nvidia-cudnn-cu12==9.1.0.70
[pip3] nvidia-cufft-cu12==11.2.1.3
[pip3] nvidia-curand-cu12==10.3.5.147
[pip3] nvidia-cusolver-cu12==11.6.1.9
[pip3] nvidia-cusparse-cu12==12.3.1.170
[pip3] nvidia-ml-py==12.560.30
[pip3] nvidia-nccl-cu12==2.21.5
[pip3] nvidia-nvjitlink-cu12==12.4.127
[pip3] nvidia-nvtx-cu12==12.4.127
[pip3] pyzmq==26.2.0
[pip3] torch==2.5.1
[pip3] torchvision==0.20.1
[pip3] transformers==4.46.3
[pip3] triton==3.1.0
[conda] Could not collect
ROCM Version: Could not collect
Neuron SDK Version: N/A
vLLM Version: 0.6.5
vLLM Build Flags:
CUDA Archs: Not Set; ROCm: Disabled; Neuron: Disabled
GPU Topology:
GPU0 GPU1 GPU2 GPU3 NIC0 CPU Affinity NUMA Affinity GPU NUMA ID
GPU0 X NV12 NV12 NV12 PIX 0-39 0 N/A
GPU1 NV12 X NV12 NV12 PIX 0-39 0 N/A
GPU2 NV12 NV12 X NV12 NODE 0-39 0 N/A
GPU3 NV12 NV12 NV12 X SYS 40-79 1 N/A
NIC0 PIX PIX NODE SYS X
Legend:
X = Self
SYS = Connection traversing PCIe as well as the SMP interconnect between NUMA nodes (e.g., QPI/UPI)
NODE = Connection traversing PCIe as well as the interconnect between PCIe Host Bridges within a NUMA node
PHB = Connection traversing PCIe as well as a PCIe Host Bridge (typically the CPU)
PXB = Connection traversing multiple PCIe bridges (without traversing the PCIe Host Bridge)
PIX = Connection traversing at most a single PCIe bridge
NV# = Connection traversing a bonded set of # NVLinks
curl -X 'POST' \
'http://localhost:8000/v1/chat/completions' \
-H 'accept: application/json' \
-H 'Content-Type: application/json' \
-d '{
"model": "mistralai/Mistral-7B-Instruct-v0.3",
"messages": [
{
"content": "What is the temperature in SF?",
"role": "user"
}
],
"tool_choice": {
"type": "function",
"function": {
"name": "get_current_weather"
}
},
"tools": [{
"type": "function",
"function": {
"name": "get_current_weather",
"description": "Get the current weather in a given location",
"parameters": {
"type": "object",
"properties": {
"city": {
"type":
"string",
"description":
"The city to find the weather for, e.g. '\''San Francisco'\''"
},
"state": {
"type":
"string",
"description":
"the two-letter abbreviation for the state that the city is in, e.g. '\''CA'\'' which would mean '\''California'\''"
},
"unit": {
"type": "string",
"description": "The unit to fetch the temperature in",
"enum": ["celsius", "fahrenheit"]
}
},
"required": ["city", "state", "unit"]
}
}
}],
"repetition_penalty": 1.0,
"top_k": -1,
"n": 2
}'
will result in a 500 with this stack trace:
INFO: ::1:55612 - "POST /v1/chat/completions HTTP/1.1" 500 Internal Server Error
ERROR 12-18 22:57:54 engine.py:135] IndexError('Error in model execution (input dumped to /tmp/err_execute_model_input_20241218-225754.pkl): tuple index out of range')
ERROR 12-18 22:57:54 engine.py:135] Traceback (most recent call last):
ERROR 12-18 22:57:54 engine.py:135] File "/workspace/my-vllm/lib64/python3.12/site-packages/vllm/worker/model_runner_base.py", line 116, in _wrapper
ERROR 12-18 22:57:54 engine.py:135] return func(*args, **kwargs)
ERROR 12-18 22:57:54 engine.py:135] ^^^^^^^^^^^^^^^^^^^^^
ERROR 12-18 22:57:54 engine.py:135] File "/workspace/my-vllm/lib64/python3.12/site-packages/vllm/worker/model_runner.py", line 1729, in execute_model
ERROR 12-18 22:57:54 engine.py:135] logits = self.model.compute_logits(hidden_or_intermediate_states,
ERROR 12-18 22:57:54 engine.py:135] ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
ERROR 12-18 22:57:54 engine.py:135] File "/workspace/my-vllm/lib64/python3.12/site-packages/vllm/model_executor/models/llama.py", line 578, in compute_logits
ERROR 12-18 22:57:54 engine.py:135] logits = self.logits_processor(self.lm_head, hidden_states,
ERROR 12-18 22:57:54 engine.py:135] ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
ERROR 12-18 22:57:54 engine.py:135] File "/workspace/my-vllm/lib64/python3.12/site-packages/torch/nn/modules/module.py", line 1736, in _wrapped_call_impl
ERROR 12-18 22:57:54 engine.py:135] return self._call_impl(*args, **kwargs)
ERROR 12-18 22:57:54 engine.py:135] ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
ERROR 12-18 22:57:54 engine.py:135] File "/workspace/my-vllm/lib64/python3.12/site-packages/torch/nn/modules/module.py", line 1747, in _call_impl
ERROR 12-18 22:57:54 engine.py:135] return forward_call(*args, **kwargs)
ERROR 12-18 22:57:54 engine.py:135] ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
ERROR 12-18 22:57:54 engine.py:135] File "/workspace/my-vllm/lib64/python3.12/site-packages/vllm/model_executor/layers/logits_processor.py", line 77, in forward
ERROR 12-18 22:57:54 engine.py:135] logits = _apply_logits_processors(logits, sampling_metadata)
ERROR 12-18 22:57:54 engine.py:135] ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
ERROR 12-18 22:57:54 engine.py:135] File "/workspace/my-vllm/lib64/python3.12/site-packages/vllm/model_executor/layers/logits_processor.py", line 153, in _apply_logits_processors
ERROR 12-18 22:57:54 engine.py:135] logits_row = logits_processor(past_tokens_ids,
ERROR 12-18 22:57:54 engine.py:135] ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
ERROR 12-18 22:57:54 engine.py:135] File "/workspace/my-vllm/lib64/python3.12/site-packages/vllm/model_executor/guided_decoding/xgrammar_decoding.py", line 258, in __call__
ERROR 12-18 22:57:54 engine.py:135] sampled_token = input_ids[-1]
ERROR 12-18 22:57:54 engine.py:135] ~~~~~~~~~^^^^
ERROR 12-18 22:57:54 engine.py:135] IndexError: tuple index out of range
ERROR 12-18 22:57:54 engine.py:135]
ERROR 12-18 22:57:54 engine.py:135] The above exception was the direct cause of the following exception:
ERROR 12-18 22:57:54 engine.py:135]
ERROR 12-18 22:57:54 engine.py:135] Traceback (most recent call last):
ERROR 12-18 22:57:54 engine.py:135] File "/workspace/my-vllm/lib64/python3.12/site-packages/vllm/engine/multiprocessing/engine.py", line 133, in start
ERROR 12-18 22:57:54 engine.py:135] self.run_engine_loop()
ERROR 12-18 22:57:54 engine.py:135] File "/workspace/my-vllm/lib64/python3.12/site-packages/vllm/engine/multiprocessing/engine.py", line 196, in run_engine_loop
ERROR 12-18 22:57:54 engine.py:135] request_outputs = self.engine_step()
ERROR 12-18 22:57:54 engine.py:135] ^^^^^^^^^^^^^^^^^^
ERROR 12-18 22:57:54 engine.py:135] File "/workspace/my-vllm/lib64/python3.12/site-packages/vllm/engine/multiprocessing/engine.py", line 214, in engine_step
ERROR 12-18 22:57:54 engine.py:135] raise e
ERROR 12-18 22:57:54 engine.py:135] File "/workspace/my-vllm/lib64/python3.12/site-packages/vllm/engine/multiprocessing/engine.py", line 205, in engine_step
ERROR 12-18 22:57:54 engine.py:135] return self.engine.step()
ERROR 12-18 22:57:54 engine.py:135] ^^^^^^^^^^^^^^^^^^
ERROR 12-18 22:57:54 engine.py:135] File "/workspace/my-vllm/lib64/python3.12/site-packages/vllm/engine/llm_engine.py", line 1405, in step
ERROR 12-18 22:57:54 engine.py:135] outputs = self.model_executor.execute_model(
ERROR 12-18 22:57:54 engine.py:135] ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
ERROR 12-18 22:57:54 engine.py:135] File "/workspace/my-vllm/lib64/python3.12/site-packages/vllm/executor/gpu_executor.py", line 88, in execute_model
ERROR 12-18 22:57:54 engine.py:135] output = self.driver_worker.execute_model(execute_model_req)
ERROR 12-18 22:57:54 engine.py:135] ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
ERROR 12-18 22:57:54 engine.py:135] File "/workspace/my-vllm/lib64/python3.12/site-packages/vllm/worker/worker_base.py", line 343, in execute_model
ERROR 12-18 22:57:54 engine.py:135] output = self.model_runner.execute_model(
ERROR 12-18 22:57:54 engine.py:135] ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
ERROR 12-18 22:57:54 engine.py:135] File "/workspace/my-vllm/lib64/python3.12/site-packages/torch/utils/_contextlib.py", line 116, in decorate_context
ERROR 12-18 22:57:54 engine.py:135] return func(*args, **kwargs)
ERROR 12-18 22:57:54 engine.py:135] ^^^^^^^^^^^^^^^^^^^^^
ERROR 12-18 22:57:54 engine.py:135] File "/workspace/my-vllm/lib64/python3.12/site-packages/vllm/worker/model_runner_base.py", line 152, in _wrapper
ERROR 12-18 22:57:54 engine.py:135] raise type(err)(
ERROR 12-18 22:57:54 engine.py:135] IndexError: Error in model execution (input dumped to /tmp/err_execute_model_input_20241218-225754.pkl): tuple index out of range
Before submitting a new issue...
Make sure you already searched for relevant issues, and asked the chatbot living at the bottom right corner of the documentation page, which can answer lots of frequently asked questions.
The text was updated successfully, but these errors were encountered:
Your current environment
The output of `python collect_env.py`
$ python collect_env.py
/workspace/my-vllm/lib64/python3.12/site-packages/transformers/utils/hub.py:128: FutureWarning: Using
TRANSFORMERS_CACHE
is deprecated and will be removed in v5 of Transformers. UseHF_HOME
instead.warnings.warn(
Collecting environment information...
PyTorch version: 2.5.1+cu124
Is debug build: False
CUDA used to build PyTorch: 12.4
ROCM used to build PyTorch: N/A
OS: Red Hat Enterprise Linux 9.5 (Plow) (x86_64)
GCC version: (GCC) 11.5.0 20240719 (Red Hat 11.5.0-2)
Clang version: Could not collect
CMake version: Could not collect
Libc version: glibc-2.34
Python version: 3.12.5 (main, Sep 11 2024, 00:00:00) [GCC 11.5.0 20240719 (Red Hat 11.5.0-2)] (64-bit runtime)
Python platform: Linux-5.14.0-284.88.1.el9_2.x86_64-x86_64-with-glibc2.34
Is CUDA available: True
CUDA runtime version: Could not collect
CUDA_MODULE_LOADING set to: LAZY
GPU models and configuration:
GPU 0: NVIDIA A100-SXM4-80GB
GPU 1: NVIDIA A100-SXM4-80GB
GPU 2: NVIDIA A100-SXM4-80GB
GPU 3: NVIDIA A100-SXM4-80GB
Nvidia driver version: 535.104.12
cuDNN version: Could not collect
HIP runtime version: N/A
MIOpen runtime version: N/A
Is XNNPACK available: True
CPU:
Architecture: x86_64
CPU op-mode(s): 32-bit, 64-bit
Address sizes: 46 bits physical, 57 bits virtual
Byte Order: Little Endian
CPU(s): 80
On-line CPU(s) list: 0-79
Vendor ID: GenuineIntel
Model name: Intel Xeon Processor (Icelake)
CPU family: 6
Model: 134
Thread(s) per core: 2
Core(s) per socket: 20
Socket(s): 2
Stepping: 0
BogoMIPS: 5600.02
Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ss ht syscall nx pdpe1gb rdtscp lm constant_tsc rep_good nopl xtopology cpuid tsc_known_freq pni pclmulqdq vmx ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand hypervisor lahf_lm abm 3dnowprefetch cpuid_fault invpcid_single ssbd ibrs ibpb stibp ibrs_enhanced tpr_shadow vnmi flexpriority ept vpid ept_ad fsgsbase tsc_adjust bmi1 avx2 smep bmi2 erms invpcid avx512f avx512dq rdseed adx smap avx512ifma clflushopt clwb avx512cd sha_ni avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves wbnoinvd arat avx512vbmi umip pku ospke avx512_vbmi2 gfni vaes vpclmulqdq avx512_vnni avx512_bitalg avx512_vpopcntdq la57 rdpid fsrm md_clear arch_capabilities
Virtualization: VT-x
Hypervisor vendor: KVM
Virtualization type: full
L1d cache: 2.5 MiB (80 instances)
L1i cache: 2.5 MiB (80 instances)
L2 cache: 160 MiB (40 instances)
L3 cache: 32 MiB (2 instances)
NUMA node(s): 2
NUMA node0 CPU(s): 0-39
NUMA node1 CPU(s): 40-79
Vulnerability Gather data sampling: Not affected
Vulnerability Itlb multihit: Not affected
Vulnerability L1tf: Not affected
Vulnerability Mds: Not affected
Vulnerability Meltdown: Not affected
Vulnerability Mmio stale data: Vulnerable: Clear CPU buffers attempted, no microcode; SMT Host state unknown
Vulnerability Reg file data sampling: Vulnerable: No microcode
Vulnerability Retbleed: Not affected
Vulnerability Spec rstack overflow: Not affected
Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl
Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization
Vulnerability Spectre v2: Mitigation; Enhanced IBRS, IBPB conditional, RSB filling, PBRSB-eIBRS Not affected
Vulnerability Srbds: Not affected
Vulnerability Tsx async abort: Not affected
Versions of relevant libraries:
[pip3] flashinfer==0.1.6+cu124torch2.4
[pip3] numpy==1.26.4
[pip3] nvidia-cublas-cu12==12.4.5.8
[pip3] nvidia-cuda-cupti-cu12==12.4.127
[pip3] nvidia-cuda-nvrtc-cu12==12.4.127
[pip3] nvidia-cuda-runtime-cu12==12.4.127
[pip3] nvidia-cudnn-cu12==9.1.0.70
[pip3] nvidia-cufft-cu12==11.2.1.3
[pip3] nvidia-curand-cu12==10.3.5.147
[pip3] nvidia-cusolver-cu12==11.6.1.9
[pip3] nvidia-cusparse-cu12==12.3.1.170
[pip3] nvidia-ml-py==12.560.30
[pip3] nvidia-nccl-cu12==2.21.5
[pip3] nvidia-nvjitlink-cu12==12.4.127
[pip3] nvidia-nvtx-cu12==12.4.127
[pip3] pyzmq==26.2.0
[pip3] torch==2.5.1
[pip3] torchvision==0.20.1
[pip3] transformers==4.46.3
[pip3] triton==3.1.0
[conda] Could not collect
ROCM Version: Could not collect
Neuron SDK Version: N/A
vLLM Version: 0.6.5
vLLM Build Flags:
CUDA Archs: Not Set; ROCm: Disabled; Neuron: Disabled
GPU Topology:
GPU0 GPU1 GPU2 GPU3 NIC0 CPU Affinity NUMA Affinity GPU NUMA ID
GPU0 X NV12 NV12 NV12 PIX 0-39 0 N/A
GPU1 NV12 X NV12 NV12 PIX 0-39 0 N/A
GPU2 NV12 NV12 X NV12 NODE 0-39 0 N/A
GPU3 NV12 NV12 NV12 X SYS 40-79 1 N/A
NIC0 PIX PIX NODE SYS X
Legend:
X = Self
SYS = Connection traversing PCIe as well as the SMP interconnect between NUMA nodes (e.g., QPI/UPI)
NODE = Connection traversing PCIe as well as the interconnect between PCIe Host Bridges within a NUMA node
PHB = Connection traversing PCIe as well as a PCIe Host Bridge (typically the CPU)
PXB = Connection traversing multiple PCIe bridges (without traversing the PCIe Host Bridge)
PIX = Connection traversing at most a single PCIe bridge
NV# = Connection traversing a bonded set of # NVLinks
NIC Legend:
NIC0: mlx5_0
NVIDIA_VISIBLE_DEVICES=GPU-d02eacbf-0d93-7141-2f45-650de9016f82,GPU-6169d05e-1d51-dfee-bbe5-1fe42096e35b,GPU-1dd95362-3e2e-8afc-f4c8-5d28663c3c73,GPU-7be30919-545a-54b7-a882-b565d1c0a133
VLLM_ALLOW_LONG_MAX_MODEL_LEN=1
VLLM_CACHE_ROOT=/tmp
VLLM_CONFIG_ROOT=/tmp
VLLM_WORKER_MULTIPROC_METHOD=fork
VLLM_USAGE_SOURCE=production-docker-image
CUDA_VISIBLE_DEVICES=0,1,2,3
CUDA_VISIBLE_DEVICES=0,1,2,3
LD_LIBRARY_PATH=/workspace/my-vllm/lib/python3.12/site-packages/cv2/../../lib64:/opt/vllm/lib/python3.12/site-packages/nvidia/nvtx/lib:/opt/vllm/lib/python3.12/site-packages/nvidia/cuda_runtime/lib:/opt/vllm/lib/python3.12/site-packages/nvidia/cuda_nvrtc/lib:
VLLM_NO_USAGE_STATS=1
CUDA_MODULE_LOADING=LAZY
Model Input Dumps
No response
🐛 Describe the bug
On v0.6.5 making a tools call with n>2 will break guided decoding with the xgrammar guided decoding backend.
Booting the server with:
And then sending this request:
will result in a 500 with this stack trace:
Before submitting a new issue...
The text was updated successfully, but these errors were encountered: